Analog and Digital Electronics

Daniel Adam Steck

Oregon Center for Optics and Department of Physics, University of Oregon
Analog and Digital Electronics

Daniel Adam Steck

Oregon Center for Optics and Department of Physics, University of Oregon
Contents

I Analog Electronics

1 Resistors

1.1 Basic Definitions .. 15
1.2 Ohm’s Law ... 15
1.2.1 Resistors .. 16
1.3 Networks and Kirchoff’s Laws ... 16
1.3.1 Series Resistors ... 17
1.3.2 Parallel Resistors ... 18
1.3.3 Voltage Divider ... 18
1.4 Thévenin’s Theorem .. 19
1.4.1 Voltage Divider ... 19
1.4.2 Connected Circuits and Power Transfer 21
1.5 Circuit Practice ... 23
1.5.1 Reflection-Symmetric Network 23
1.5.2 Series and Parallel Light Bulbs 23
1.5.3 Thévenin Circuit .. 24
1.6 Exercises ... 25

2 Capacitors and Inductors

2.1 Capacitor Basics ... 33
2.2 Simple R–C Circuits .. 34
2.2.1 Integrator ... 34
2.2.1.1 Solution by Integrating Factor 35
2.2.1.2 Constant Input: Exponential Charging 35
2.2.1.3 Integration .. 36
2.2.2 Differentiator ... 36
2.3 AC Signals and Complex Notation 37
2.3.1 Complex Phase ... 37
2.3.2 Capacitive Reactance ... 38
2.3.3 Inductive Reactance ... 39
2.3.4 Impedance ... 39
2.3.5 Low-Pass Filter .. 39
2.3.6 Example Problem: Alternate Scaling 41
2.3.7 Example Problem: High-Pass Filter 41
2.4 Phase ... 42
2.4.1 Example: Low-Pass Filter ... 43
2.5 Power .. 44
4.12 Circuit Practice 84
 4.12.1 Transistor Switching an Inductive Load 84
 4.12.2 Joule Thief 85
 4.12.3 Solid-State Tesla Coil 86
 4.12.4 Eric Clapton Signature Stratocaster Preamplifier 86
4.13 Exercises ... 88

5 Field-Effect Transistors 93
 5.1 JFET (Depletion-Mode FET) 93
 5.2 MOSFET (Enhancement-Mode FET) 95
 5.3 Quantitative FET Behavior 96
 5.4 Basic FET Circuits 97
 5.4.1 JFET Current Source 97
 5.4.2 JFET Source Follower 97
 5.4.3 JFET Voltage Amplifier 98
 5.4.4 MOSFET Analog Switch 99
 5.5 Exercises .. 100

6 Operational Amplifiers 101
 6.1 Op-Amp Basics 101
 6.1.1 Usage: Open-Loop 101
 6.1.2 Usage: Closed-Loop 102
 6.2 Op-Amp “Golden Rules” 102
 6.3 Basic Op-Amp Circuits 102
 6.3.1 Unity-Gain Buffer/Follower 102
 6.3.2 Inverting Amplifier 103
 6.3.3 Noninverting Amplifier 104
 6.3.4 Summing (Inverting) Amplifier 104
 6.3.5 Circuit Practice: Differential Amplifier 105
 6.4 Op-Amp Filters 106
 6.4.1 Op-Amp Differentiator 106
 6.4.2 Op-Amp Integrator 107
 6.4.3 Differentiator Issues 108
 6.4.4 Integrator Issues 109
 6.4.5 Sources of Integrator Error 110
 6.4.5.1 Input Bias Current 110
 6.4.5.2 Input Offset Voltage 112
 6.4.6 Integrator Applications 112
 6.5 Instrumentation Amplifiers 113
 6.5.1 “Classic” Instrumentation Amplifier 114
 6.5.2 Instrumentation-Amplifier Applications 115
 6.5.2.1 Thermocouple Amplifier 115
 6.5.2.2 Differential Transmission for Noise Rejection 116
 6.5.2.3 AC-Coupled Inputs with High Impedance 117
 6.6 Practical Considerations 117
 6.6.1 Input-Bias Currents and Precision Amplifiers .. 118
 6.6.1.1 Inverting Amplifier 118
 6.6.1.2 Balanced Input-Impedances: Inverting Amplifier ... 118
 6.6.1.3 Balanced Input-Impedances: Noninverting Amplifier 119
 6.6.1.4 Input Offset Currents 120
 6.6.1.5 Common-Mode Rejection Ratio 120
 6.6.2 Power Supplies 120
 6.6.2.1 Power-Supply Rejection 121
6.6.2.2 Power-Supply Bypass Capacitors .. 121
6.7 Finite-Gain Analysis ... 123
 6.7.1 Noninverting Amplifier .. 123
 6.7.1.1 Gain Limits and Error .. 124
 6.7.1.2 Insensitivity to Gain Variation 125
 6.7.2 Feedback and Input Impedance .. 125
 6.7.3 Feedback and Output Impedance ... 126
 6.7.4 Circuit Practice: Finite Gain in the Inverting Amplifier 126
6.8 Bandwidth .. 128
 6.8.1 Slew Rate .. 129
 6.8.1.1 Slew Rate and Power-Boosted Op-Amps 129
 6.8.1.2 Stability and Compensation 131
6.9 Comparators .. 132
 6.9.1 Schmitt Trigger ... 133
6.10 Positive Feedback and Oscillator Circuits 134
 6.10.1 Relaxation Oscillator .. 134
 6.10.2 Buffered Phase-Shift Oscillator 135
6.11 Circuit Practice ... 137
 6.11.1 Analog Computers .. 137
 6.11.1.1 Proportional–Integral Amplifier 137
 6.11.1.2 Damped Harmonic Oscillator 137
 6.11.2 Gyrator ... 138
 6.11.3 Guitar Preamp with Midrange Boost/Cut 140
 6.11.4 Active Rectifiers .. 143
 6.11.5 Pulse-Area Stabilizer ... 144
6.12 Exercises ... 146

7 PID Control ... 155
 7.1 Basics of Linear Control ... 155
 7.2 Example: First-Order Plant, Proportional Control 156
 7.2.0.1 General Result: Closed-Loop Transfer Function 156
 7.2.1 Frequency-Domain Solution of the Example 157
 7.2.2 Time-Domain Solution of the Example 157
 7.2.3 Constant Input and Proportional Droop 157
 7.3 Integral Control ... 158
 7.3.1 Example: First-Order Plant, Integral Control 158
 7.3.2 Frequency Domain ... 158
 7.4 Proportional–Integral (PI) Control 159
 7.5 Proportional–Integral–Derivative (PID) Control 159

II Digital Electronics .. 161

8 Binary Logic and Logic Gates .. 163
 8.1 Binary Logic ... 163
 8.2 Binary Arithmetic .. 163
 8.2.1 Unsigned Integers .. 163
 8.2.1.1 Binary-Coded Decimal ... 164
 8.2.1.2 Hexadecimal ... 164
 8.2.2 Negative Values and Sign Conventions 164
 8.2.2.1 Sign-MagnitudeConvention 164
 8.2.2.2 Two’s Complement .. 164
 8.3 Logic Gates ... 165
Contents

8.3.1 One-Input Gates .. 165
8.3.2 Two-Input Gates .. 166
 8.3.2.1 AND and NAND ... 166
 8.3.2.2 OR and NOR .. 166
 8.3.2.3 Universal Gates ... 166
 8.3.2.4 XOR and XNOR ... 166
8.3.3 More Complex Gates ... 167
8.4 Circuit Practice ... 167
8.5 Exercises .. 168

9 Boolean Algebra .. 171
 9.1 Algebras and Boolean Algebra 171
 9.2 Boolean-Algebraic Theorems and Manipulations 172
 9.2.1 De Morgan’s Theorems 172
 9.2.2 Absorption Theorems .. 172
 9.2.3 Another Theorem ... 172
 9.2.4 Example: XOR Gate .. 172
 9.2.4.1 NAND-Gate Realization 173
 9.2.5 Example: Algebraic Simplification 173
 9.3 Karnaugh Maps .. 174
 9.3.1 Three-Input Example 174
 9.3.2 Four-Input Example ... 176
 9.3.3 XOR Example .. 176
 9.3.4 Race Hazards .. 176
 9.4 Circuit Practice .. 178
 9.4.1 Boolean-Algebra Theorems 178
 9.4.2 Karnaugh Map ... 178
 9.5 Exercises .. 180

10 Physical Implementation of Logic Gates 183
 10.1 Simple Mechanical Switches 183
 10.2 Diode Logic (DL) .. 184
 10.2.1 Diode Review .. 184
 10.2.2 DL AND Gate .. 184
 10.2.3 DL OR Gate .. 185
 10.3 Resistor-Transistor Logic (RTL) 185
 10.3.1 BJT Review .. 186
 10.3.2 RTL NOT Gate .. 186
 10.3.3 RTL NOR Gate .. 187
 10.4 The Real Thing: Transistor-Transistor Logic (TTL) 187
 10.4.1 TTL Nomenclature ... 189
 10.4.2 CMOS .. 189
 10.5 Circuit Practice .. 190
 10.6 Exercises .. 191

11 Multiplexers and Demultiplexers 193
 11.1 Multiplexers ... 193
 11.1.1 Example: 74151 ... 193
 11.2 Demultiplexers ... 194
 11.2.1 Example: 74138 ... 194
 11.3 Making a MUX ... 194
 11.4 Expanding a MUX (or DEMUX) 195
 11.5 Analog MUX/DEMUX ... 195
11.6 Circuit Practice: Multiplexed Thermocouple Monitor .. 196
11.7 Exercises .. 199

12 Flip Flops .. 201
 12.1 Flip-Flop Construction: SR Flip Flop ... 201
 12.1.1 Application: Debounced Switch .. 202
 12.2 Clocked Flip-Flops ... 203
 12.2.1 D-Type Flip-Flop .. 203
 12.2.2 Edge-Triggered, D-Type Flip-Flop .. 204
 12.2.3 JK Flip-Flop (Edge-Triggered) ... 204
 12.3 Circuit Practice ... 205
 12.4 Counters .. 206
 12.4.1 Asynchronous (Ripple) Counter ... 207
 12.5 Memory and Registers .. 207
 12.5.1 Register ... 207
 12.5.2 Shift Register .. 208
 12.6 Circuit Practice ... 208
 12.6.1 Pulse-Area Stabilizer ... 208
 12.7 Sequential Logic and the State Machine ... 211
 12.7.1 Example: Synchronous, Divide-by-3 Counter .. 211
 12.7.2 State Diagrams ... 213
 12.8 Memory .. 214
 12.8.1 Example: 8×1-bit RAM .. 214
 12.8.2 Example: 6116 SRAM .. 215
 12.8.3 Other Memory Types ... 216
 12.9 Circuit Practice: Memory .. 217
 12.10 State Machines with Memory ... 217
 12.10.1 Example: Divide-by-3-With-Hold Counter .. 218
 12.10.2 General Considerations: Towards a Microprocessor 219
 12.10.3 Programmable ROM as Logic ... 219
 12.10.4 Programmable Logic Devices .. 221
 12.10.5 Circuit Practice: Divide-by-2-or-3 Counter .. 222
 12.11 Exercises ... 223

13 Comparators ... 229
 13.1 Overview and Review ... 229
 13.1.1 Example: TL3016 ... 229
 13.2 Open-Collector Output .. 230
 13.3 Schmitt Trigger .. 231
 13.3.1 Example: Analog-to-Digital Clock-Signal Conversion 233
 13.4 Circuit Practice ... 234
 13.5 Exercises ... 236

14 Pulse and Waveform Generation .. 237
 14.1 The Classic 555 Timer .. 237
 14.1.1 Equivalent Circuit .. 237
 14.1.2 Astable Multivibrator ... 238
 14.1.2.1 Frequency Modulation .. 239
 14.1.2.2 Pulse-Width Modulation: LED Dimmer ... 240
 14.1.3 Circuit Practice: Duty Cycle ... 240
 14.2 Monostable Multivibrators ... 241
 14.2.1 555 as a One-Shot .. 241
 14.2.1.1 The 74121 .. 243
Part I

Analog Electronics
Chapter 1

Resistors

1.1 Basic Definitions

Here, we’re going to breeze through a few fundamental notions in electromagnetism. At the most basic level, electronics studies the flow of “stuff,” or more specifically, charge (measured in Coulombs). The flow of charge is current (not “amperage”), defined by

$$I = \frac{dQ}{dt}.$$ \hspace{1cm} (1.1)

What causes charge to move around and form currents? It’s the potential associated with an electric field. To move a charge between two points, say A and B, this requires some work (energy) W done against the force due to the field. Then the potential difference or voltage difference is

$$V_{AB} = \frac{W}{Q}.$$ \hspace{1cm} (1.2)

That is, the work is proportional to the charge and to the difference in potential between the two points:

$$V_{AB} := V_A - V_B.$$ \hspace{1cm} (1.3)

For a static electric field, it turns out that V_{AB} is independent of the path that the charge takes between the points, so we can represent this as a simple difference between the endpoint potentials. It’s important to note that only differences in potential matter: if we raise both V_A and V_B by the same amount, the work to transport the charge isn’t affected. Finally, note that voltage/potential is measured in volts (V), which is the same as joules per coulomb (J/C), as we can see from the work relation (1.2).

An electromotive force (EMF) is a special name for a voltage difference due to an energy source (say, a battery, or a power supply).

1.2 Ohm’s Law

Since electric fields exert forces on charges, you might think that a constant electric field makes a charge move ballistically, or like a mass moves under constant gravity. But charges (electrons) moving through a material (metal, semiconductor), due to interactions with the material, quickly settle into a terminal velocity, like a particle falling through air under gravity. Under these conditions, and for small voltages, the velocity of the charges is proportional to the applied voltage, so the current is proportional to the voltage. This is the content of Ohm’s law. Consider a resistor (essentially any conducting material, say a wire, where the material “resists” the flow of charge), which we represent by the following schematic symbol:
Here the resistance (measured in ohms or Ω) is \(R \), and the resistor connects points \(A \) and \(B \). Then Ohm’s law states

\[
V_{AB} = IR. \tag{1.4}
\]

(Ohm’s law)

That is, for a fixed voltage, the current is inversely proportional to the resistance, which is sensible.

The voltage (and hence, electric field) does work on the charges. The power is the rate of work, or

\[
P = \frac{dW}{dt}. \tag{1.5}
\]

From Eq. (1.2), \(W = VQ \) (dropping subscripts on \(V \)), and at constant voltage,

\[
P = V \frac{dQ}{dt} = VI. \tag{1.6}
\]

(electrical power)

Of course, with Ohm’s law, we can also write

\[
P = VI = I^2R = \frac{V^2}{R} \tag{1.7}
\]

(electrical power)

for a few useful alternate forms of the electrical power

1.2.1 Resistors

Essentially anything short of a superconductor has resistance. Wires that carry current have resistance, but usually it’s desirable to keep their resistance small. But in virtually all electronic circuits, it’s useful to introduce controlled quantities of resistance, and these are the electrical components we call resistors. A few basic types are:

1. **wirewound resistors**: are just wires wrapped around a form. These are usually expensive, but can be precise (using thin wire to make a large resistor) or able to handle high power (using thick wire embedded in ceramic).

2. **carbon film**: are a thin layer of carbon deposited on some insulating form (usually a small cylinder). They’re cheap, but not particularly accurate in value. In the type with axial leads, these are usually recognizable by their tan color.

3. **metal film**: are a thin layer of metal deposited on some insulating form (again, usually a small cylinder). They’re more expensive than carbon, but more accurate. In the type with axial leads, these are usually recognizable by a blue or blue/green color.

1.3 Networks and Kirchoff’s Laws

A simple circuit is any network of resistors, batteries, and wires (later to include more stuff!). There are two basic laws that govern the circuit if all we have is batteries and resistors, and these are called Kirchoff’s laws, on for current, and one for voltage.

1. The **current law** states that at any junction, the current going in to the junction must exactly balance the current going out, for charge not to accumulate there:

\[
\sum_j I_{\text{in},j} = \sum_j I_{\text{out},j}. \tag{1.8}
\]

We can also keep track of the sense of “in” and “out” by keeping track of the sign of the current (always important to do!). Thus, for example, in the following junction,
1.3 Networks and Kirchoff’s Laws

we should write

\[I_1 + I_2 + I_3 = 0. \]

(1.9)

On the other hand, if we draw the currents like this,

then we should write

\[I_1 - I_2 + I_3 = 0. \]

(1.10)

2. The voltage law states that around a closed circuit or loop in a circuit, the EMFs must balance the voltage drops, or

\[\sum_j \varepsilon_j = \sum_j V_j, \]

(1.11)

where the \(\varepsilon_j \) are the EMFs, and the \(V_j \) are the voltage drops. For example, in the circuit below, the EMF is \(V \) due to the battery, so the voltage drop across the resistor must also be \(V \).

\[\begin{array}{c}
V \\
\hline
R
\end{array} \]

1.3.1 Series Resistors

Two resistors in series are the same as a single resistor, with an effective resistance that is the sum of the individual resistors.

\[R_1 \quad R_2 = R_{\text{eff}} = R_1 + R_2 \]

Why? (Try to work this out on your own!)

The idea is that any current \(I \) that flows through one must flow through the other. So the voltages across the resistors are \(V_1 = IR_1 \) and \(V_2 = IR_2 \). Then the total drop across both resistors is

\[V = V_1 + V_2 = I(R_1 + R_2) =: IR_{\text{eff}}. \]

(1.12)

Thus,

\[R_{\text{eff}} = R_1 + R_2 \]

(1.13)

is the effective resistance of the series pair. Of course, this generalizes to multiple resistors.
1.3.2 Parallel Resistors

Two resistors in parallel also behave as a single resistor, as shown below.

\[R_1 R_2 = R_{\text{eff}} = R_1 \parallel R_2 \]

The shorthand notation here is
\[\frac{1}{R_1 \parallel R_2} := \frac{1}{R_1} + \frac{1}{R_2}, \] \hspace{1cm} (1.14)
so that more parallelism in resistors decreases resistance.

Why is this? In this case, the voltage \(V \) is common to the two resistors. The currents are \(I_1 = \frac{V}{R_1} \) and \(I_2 = \frac{V}{R_2} \). But the total current through the pair must be \(I = I_1 + I_2 \), which satisfies \(I = \frac{V}{R_{\text{eff}}} \). This means
\[\frac{V}{R_{\text{eff}}} = \frac{V}{R_1} + \frac{V}{R_2}, \] \hspace{1cm} (1.15)
and canceling the voltage gives
\[\frac{1}{R_{\text{eff}}} = \frac{1}{R_1} + \frac{1}{R_2}, \] \hspace{1cm} (1.16)
which agrees with the shorthand above.

1.3.3 Voltage Divider

This is a useful combination of resistors that occurs all the time in circuits.

\[V_{\text{in}} \]
\[\downarrow \]
\[R_1 \]
\[\downarrow \]
\[I \]
\[\downarrow \]
\[R_2 \]
\[\downarrow \]
\[V_{\text{out}} \]

Here at the bottom of the circuit diagram, we are drawing the ground symbol, which means we are declaring this point to be a fixed voltage (say, zero), and all other voltages are differences with respect to ground. (In the “ground” or “earth” pin on an ac power receptacle, this is literally the ground outside. Often the case of electrical devices is connected to ground for safety, and in cars the entire chassis is ground.)

Now due to the input voltage \(V_{\text{in}} \), some current flows in from the input. This must satisfy
\[I = \frac{V_{\text{in}}}{R_1 + R_2}, \] \hspace{1cm} (1.17)
The same current flows through \(R_2 \), so
\[V_{\text{out}} = I R_2 = \left(\frac{R_2}{R_1 + R_2} \right) V_{\text{in}}. \] \hspace{1cm} (1.18)

The output voltage is reduced from the input by the ratio of \(R_2 \) to the total resistance. This is important; you should memorize this. Especially if this is made from an adjustable resistor (potentiometer), this can be used to make an adjustable voltage source.

However, suppose we chain two voltage dividers, as follows.
1.4 Thévenin’s Theorem

Thévenin’s theorem is very useful in analyzing passive networks. It says that any network of resistors and EMFs—if we interact with it only at two points—can be replaced by an equivalent circuit of a series EMF and resistor, as shown.

The EMF and resistance are called the Thévenin equivalent voltage and Thévenin equivalent resistance, respectively. This equivalent circuit is a direct consequence of the linearity of a passive network.

How do we find the Thévenin equivalent component values? A couple of observations:

1. If nothing is connected to the output, then $V_{out} = V_{Th}$.
2. If the output is short-circuited, then $V_{out} = 0$ and $V_{Th} = R_{Th}I_{short}$.

These allow you to infer the Thévenin values. The second rule is useful experimentally, provided shorting the output does not destroy the circuit!

An alternate way to find the Thévenin resistance, especially in analyzing a circuit on paper, is to replace all EMFs by short circuits, and compute the equivalent resistance at the output.

1.4.1 Voltage Divider

Back to the voltage divider of Section 1.3.3.
1. We already found the Thévenin voltage as the unloaded-output voltage:

\[V_{\text{Th}} = \left(\frac{R_2}{R_1 + R_2} \right) V_{\text{in}}. \]

(1.19) (voltage divider, Thévenin voltage)

2. If we short the output (to ground), the current only flows through \(R_1 \), so \(I_{\text{short}} = \frac{V_{\text{in}}}{R_1} \). Then using \(R_{\text{Th}} = \frac{V_{\text{Th}}}{I_{\text{short}}} \), we get

\[R_{\text{Th}} = \frac{R_1 R_2}{R_1 + R_2} = R_1 \parallel R_2. \]

(voltage divider, Thévenin resistance) (1.20)

That is, the equivalent circuit is as below

\[\begin{align*}
R_{\text{Th}} & \quad V_{\text{Th}} \\
& \quad V_{\text{out}}
\end{align*} \]

The equivalent voltage is the divided voltage, and the equivalent resistance is the parallel resistance of the two resistors. **This is important; you should memorize this.**

Now back to the example of two cascaded voltage dividers.

\[\begin{align*}
R & \quad V_{\text{in}} \\
\parallel & \quad R \\
\parallel & \quad R \\
& \quad V_{\text{out}}
\end{align*} \]

We can replace the first divider by the Thévenin equivalent:
1.4 Thévenin’s Theorem

Now we are back to a simple voltage divider, so

\[V_{\text{out}} = \left(\frac{2}{5} \right) \frac{V_{\text{in}}}{2} = \frac{V_{\text{in}}}{5}. \] (1.21)

1.4.2 Connected Circuits and Power Transfer

The idea of Thévenin equivalence is also useful when analyzing what happens when you connect two fairly arbitrary circuits together. Suppose we take the common situation of one circuit “powering” another. That is, two circuits interact,

1. The “supply” is some circuit with EMFs.

2. The “load” is some circuit without EMFs.

Using the Thévenin-equivalent circuits for both, we can represent the connection thusly:

This is just a voltage divider, so we can write the output as

\[V_{\text{out}} = \left(\frac{R_{\text{load}}}{R_{\text{load}} + R_{\text{supply}}} \right) V_{\text{supply}}. \] (1.22)

Now a few remarks are in order.

1. If \(R_{\text{load}} \gg R_{\text{supply}} \), then \(V_{\text{out}} \approx V_{\text{supply}} \), and the supply acts like an ideal voltage source. This applies to the “unloaded” (large \(R_{\text{load}} \)) and “good supply” (small \(R_{\text{supply}} \)) regimes.

2. If the supply is a battery, \(R_{\text{supply}} \) is the “internal resistance” of the battery. The internal resistance of a battery is larger for smaller or “used-up” batteries. The symptom is that the voltage sags when you try to draw current.

3. \(R_{\text{supply}} \) is called the output impedance of the supply. \(R_{\text{load}} \) is called the input impedance of the load.
4. The **impedance-matching condition** answer, under what conditions is maximum power transferred from source to load? The power in the load is

\[P_{\text{load}} = \frac{V_{\text{out}}^2}{R_{\text{load}}} = \frac{R_{\text{load}}}{(R_{\text{load}} + R_{\text{supply}})^2} V_{\text{supply}}^2. \]

(1.23)

Maximizing this via

\[\frac{d}{da} \left(\frac{a}{(a + b)^2} \right) = \frac{1}{(a + b)^2} - \frac{2a}{(a + b)^3} = 0, \]

(1.24)

which leads to \(a = b \), we have the matching condition

\[R_{\text{load}} = R_{\text{supply}}. \]

(impedance-matching condition)

This is saying, for a fixed source impedance, the most power we can get out of the source and into the load is if the load impedance matches the supply impedance. In older tube amplifiers, this was an important consideration. For efficient matching to different speaker loads, amplifier output transformers would often have different “taps” for 4Ω, 8Ω, 16Ω, etc. speakers.
1.5 Circuit Practice

Here are a few example circuits to analyze with solutions; try to work these out and test your understanding so far. (Try before looking at the solutions!)

1.5.1 Reflection-Symmetric Network

Given that all resistors here are equal and of resistance R, what is the equivalent resistance between A and B?

![Diagram of Reflection-Symmetric Network]

Solution. Notice that by symmetry, the voltage across the center resistance is zero, so the current flowing through it is zero, no matter what the voltage V_{AB}. Thus, we can remove it from the circuit. The same goes for the two other “equatorial” resistors. Thus, we have 4 parallel resistances of $2R$, for a total resistance $R/2$.

1.5.2 Series and Parallel Light Bulbs

Suppose the three bulbs in the circuit below are identical.

![Diagram of Series and Parallel Light Bulbs]

What is the relative brightness of the bulbs? Do bulbs B and C get brighter or dimmer when you remove A?

Solution. First, note that half the C current flows through A and B, while A and B drop half the voltage of C. So A and B are $1/4$ as bright as C.

When A is removed, then B and C are equally bright. Less current flows overall, because the total resistance is larger. C drops less voltage than it used to, B drops more than it used to. Clearly C should be dimmer, but B should be brighter, because it now has more voltage and more current (the drop in overall current is outweighed by the factor of 2 this bulb gets by its neighbor disappearing).

To be careful, note in the original case that the voltage across C is $(2/3)V$, and across A and B it is $(1/3)V$, where V is the battery voltage. The current through C is $(2/3)V/R$, and half that flows through A and B. In the new case, each bulb drops $V/2$, and current $(1/2)V/R$ flows through each. Before, the C power was the product of voltage and current, or $(4/9)V^2/R$, and now it is $(1/2)V^2/R$, so this is dimmer. Before, the B power was $(1/9)V^2/R$, so this one gets brighter.
1.5.3 Thévenin Circuit

Compute I_3 in the circuit below, by using the Thévenin equivalent to the circuit, thinking of V_2 as the “load” for the rest of the circuit.

Use values $R_1 = 1 \, \Omega$, $R_2 = 2 \, \Omega$, $R_3 = 4 \, \Omega$, $V_1 = 1 \, V$, and $V_2 = 2 \, V$.

Solution. To work out the Thévenin equivalent, first look at the “unloaded” circuit:

The output voltage (and thus Thévenin-equivalent voltage) here is just the voltage-divider result

$$V_{Th} = \left(\frac{R_2}{R_1 + R_2} \right) V_1 = \frac{2}{3} \, V.$$

(1.26)

To get the resistance, replace the EMF by a short:

The Thévenin resistance is the resistance that appears at the output terminals, or

$$R_{Th} = R_3 + R_1 || R_2 = R_3 + \frac{R_1 R_2}{R_1 + R_2} = \frac{14}{3} \, \Omega.$$

(1.27)

Now going back to the original circuit, we have the equivalent

This is pretty easy to solve, just use Ohm’s law:

$$I_3 = \frac{V_2 - V_{Th}}{R_{Th}} = \frac{(4/3) \, V}{(14/3) \, \Omega} = \frac{2}{7} \, A.$$

(1.28)
1.6 Exercises

Problem 1.1

Ohm’s law for the conductance G is

$$I = GV,$$

where the conductance is related to the resistance by $G = 1/R$, and G is measured in $mhos$, or $℧$. (An equivalent but less entertaining unit is the siemens, or S.)

Derive expressions for the conductance G of two conductors of conductances G_1 and G_2 in series. Do the same for two conductors in parallel. Use only the form of Ohm’s law above to start; do not use the analogous results for parallel and series resistances.

Problem 1.2

Compute V_{out}. This is a voltage divider, but the “bottom” end is not grounded. Put the result into some form you can remember and then memorize it.

Problem 1.3

In this circuit,

\[
\begin{align*}
V_c &= \frac{R_b R_c V_1 + R_c R_a V_2 + R_a R_b V_3}{R_a R_b + R_b R_c + R_c R_a}.
\end{align*}
\]

Problem 1.4

Find relations between resistances R_1, R_2, and R_3 in the left-hand network, and resistances R_a, R_b, and R_c in the right-hand network, that make the two networks equivalent.
What does it mean for two resistor networks to be equivalent? Label the voltages and currents, for example, as follows.

Now it’s useful to think of some of the voltages and currents as “inputs,” and others as “outputs,” or “responses.” For example, if the three voltages are inputs, then they cause the corresponding currents to flow. You can also think of one or two of the currents as being inputs instead of their respective voltages. (But not all three currents; why?) The circuits are equivalent if every set of inputs produces the equivalent set of outputs. For the purposes of this problem, it is sufficient to show that the two networks produce equivalent relations between currents and voltages.

To do this:
(a) Derive expressions for the currents I_1, I_2, and I_3 in terms of the voltages for the left-hand (“Delta”) circuit.
(b) Derive expressions for the currents I_1, I_2, and I_3 in terms of the voltages for the right-hand (“star”) circuit.
(c) Set the corresponding currents in the two circuits equal to each other, and derive expressions for R_a, R_b, and R_c in terms of R_1, R_2, and R_3. (You may think of the voltages as “inputs,” and thus as independent parameters.)

Problem 1.5

Give the Thevenin voltage V_{Th} and resistance R_{Th} for the Thevenin equivalent circuit of the circuit shown below.
Problem 1.6

Consider the following circuit, consisting of an infinite cascade of voltage dividers.

By how much does the rest of the divider chain load down the first divider? That is, in the equivalent circuit
what is the value of R_{eff}?

Hint: In the original divider chain, consider the second divider, along with the rest of the chain. *This* part of the circuit is also equivalent to the same effective circuit. Now you have two different, equivalent circuits in terms of R and R_{eff}; compute the resistance from the point V to ground in both circuits, equate, and solve for R_{eff}.

Problem 1.7

Consider a network of 12 identical resistors of resistance R in the shape of a cube, as shown in the circuit below. Compute the equivalent resistance between the two terminals shown at opposite corners of the cube.

Hint: use symmetry, and analyze a current flowing between the two terminals. It also may (or may not) help to identify which junctions are at equivalent potentials.

Problem 1.8

Consider the network below of 8 identical resistors and 4 identical voltage sources. With the two indicated terminals as the output, give the Thevenin equivalent circuit. *Explain* your result.
Problem 1.9

A “schmesistor” is a device that obeys “Schmohm’s law,”
\[V = I^2 S, \]
where \(S \) is the “schmesistance.”

(a) Show that two schmesistors \(S_1 \) and \(S_2 \) in **series** behave like one schmesistor with schmesistance \(S_{\text{eff}} = S_1 + S_2 \).

(b) Show that two schmesistors \(S_1 \) and \(S_2 \) in **parallel** behave like one schmesistor with schmesistance
\[S_{\text{eff}} = \left(\frac{1}{\sqrt{S_1}} + \frac{1}{\sqrt{S_2}} \right)^{-2}. \]

(c) Describe the difficulty in using complex notation to analyze a circuit that includes schmesistors.

Problem 1.10

Give the Thévenin equivalent circuit for the circuit below, as “seen” by the output terminals marked by \(V_{\text{out}} \).

Problem 1.11

(a) Compute the effective resistance between points \(A \) and \(B \).
(b) Compute the effective resistance between points A and B.

![Resistor network diagram]

Hint: symmetry.

(c) *(Extra credit, 20 points; this is not trivial, don’t be working on this until you finish everything else; partial credit *only* if you make *substantial* progress.*) Compute the effective resistance between points A and B.

![Resistor network diagram]

Problem 1.12

(a) Compute the effective resistance between points A and B.

![Resistor network diagram]

(b) Compute the effective resistance between points A and B.

Hint: symmetry. There are (at least) two symmetries you should be taking advantage of here.

(c) Compute the effective resistance between points A and B.

![Resistor network diagram]
Hint: symmetry, but note that it is not true in general that $V_C = V_D$.

(d) Generalize (a)–(c) to a resistor network forming a 4×4 grid(!) of squares.
Chapter 2

Capacitors and Inductors

2.1 Capacitor Basics

A capacitor (an older, equivalent term is condensor) is, at minimum, a pair of conductors separated by vacuum or dielectric. The symbol itself depicts two parallel electrodes.

Generally, useful capacitors have a relatively large area to achieve a reasonably useful capacitance, so they are something like a pair of planar conductors, with little separation. They may have stacks of many planar conductors to increase the area even further, and the stacks may be rolled up to save space and stored in a can or dipped in epoxy for robustness.

Capacitors act as devices to store charge, and in doing so they also store energy. The charge stored on the plates generates an electric field and thus a potential difference between the capacitor plates. The potential and charge are related by the capacitor law,

\[Q = CV, \]

\[(2.1) \]

(capacitor law)

where \(C \) is the capacitance, measured in Farads (F), which characterizes the capacitor. Larger conductor areas, “stronger” dielectrics, and smaller electrode spacing all result in larger capacitance. (For example, a few twists to intertwine two pieces of insulated hookup wire makes a capacitor of a few pF.) Differentiating this relation at constant capacitance, and using \(I = dQ/dt \), we find

\[I = C \frac{dV}{dt}, \]

\[(2.2) \]

(capacitor charging)

which means that a current charges or discharges a capacitor, allowing it to build up or bleed off charge, thus changing the voltage.

There are many types of capacitors, and usually the different types are named according to their dielectrics. A few of the most important are:

1. **ceramic/monolithic**: these tend to be cheap, and work reasonably well at high frequencies. The capacitances are fairly small in the overall spectrum, ranging from a \(\sim \)pF to about \(\sim 0.1 \) \(\mu \)F.

2. **electrolytic**: generally this refers to aluminum electrolytic capacitors. In these capacitors, one electrode is aluminum foil, and the other is a liquid electrolyte. Under normal operation, an oxide layer grows on the aluminum and acts as a thin dielectric layer. The foil can be coiled to give large surface area, and the dielectric is very thin, so capacitances can be large, from \(\sim 1 \) \(\mu \)F to \(\sim 1 \) F or more,
though these tend not to work as well at high frequencies. These are polarized, meaning they can only sustain voltage applied in one direction; the wrong voltage polarity can cause the insulating layer to break down, leading to failure of the capacitor.

3. tantalum: these are also electrolytic capacitors, with a sintered titanium pellet as one electrode, and a solid electrolyte as the others. These typically have intermediate capacitances in the range of $\sim 0.1 \, \mu F$ to $\sim 10 \, \mu F$, and are fairly compact compared to aluminum electrolytics.

There are many other kinds of capacitors. Some examples include paper, mica, mylar, polystyrene, polypropylene, oil, and niobium electrolytic.

Like resistors, networked capacitors can combine to form equivalent single capacitors. Two capacitors in parallel simply add their capacitances,

$$ C_{1} + C_{2} = C_{\text{eff}} $$

as resistors in series add. Two series capacitors add less straightforwardly,

$$ C_{1}^{-1} + C_{2}^{-1} = C_{\text{eff}}^{-1} $$

like two parallel resistors add.

2.2 Simple R–C Circuits

2.2.1 Integrator

Consider the simple R–C circuit below. It looks something like a voltage divider, with the lower resistor replaced by a capacitor.

To analyze this (unloaded) circuit, note that all of the current I going through the resistor must also pass through the capacitor. Applying Ohm’s law to determine the current,

$$ V_{\text{in}} - V_{\text{out}} = IR, \quad (2.3) $$

and then using the capacitor-charging law (2.2) to relate the current to the output voltage,

$$ I = C \frac{dV_{\text{out}}}{dt}. \quad (2.4) $$

Solving for dV_{out}/dt and eliminating I,

$$ \frac{dV_{\text{out}}(t)}{dt} = -\frac{V_{\text{out}}(t)}{RC} + \frac{V_{\text{in}}(t)}{RC}. \quad (2.5) $$

(differential equation for integrator)

Note that by comparing left- and right-hand sides here, we can see that RC must have the units of time for the units to work out.
2.2 Simple R–C Circuits

2.2.1.1 Solution by Integrating Factor

So how do we solve this differential equation? Note that the input \(V_{\text{in}}(t) \) is arbitrary and unknown, so the best we can do is to obtain the solution in terms of \(V_{\text{in}}(t) \). For this type of ordinary differential equation (ODE), there is a nice trick to simplify it into something more manageable. The idea is to first set \(V_{\text{in}} = 0 \), and look at the equation.

\[
\frac{dV_{\text{out}}(t)}{dt} = -\frac{V_{\text{out}}(t)}{RC}.
\]

(2.6)

This ODE is easy to solve: it’s just exponential decay,

\[
V_{\text{out}}(t) = V_{\text{out}}(0) e^{-t/RC}.
\]

(2.7)

Now the idea is that even in the presence of \(V_{\text{in}} \), we should expect more or less the same (exponential-decay) behavior. So let’s “build this in” to the solution by assuming a solution of the form

\[
V_{\text{out}}(t) = \tilde{V}(t) e^{-t/RC},
\]

(2.8)

where \(\tilde{V}(t) \) is the “deviation” from the simple solution \(e^{-t/RC} \), which is called an integrating factor. (We aren’t losing anything in this assumption, because \(\tilde{V} \) could be anything.) Then solving for \(\tilde{V} \),

\[
\tilde{V} = V_{\text{out}} e^{t/RC},
\]

(2.9)

and differentiating,

\[
\frac{d\tilde{V}}{dt} = \frac{dV_{\text{out}}}{dt} e^{t/RC} + \frac{1}{RC} V_{\text{out}} e^{t/RC}.
\]

(2.10)

Now if we multiply Eq. (2.5) by \(e^{t/RC} \), and bring both \(V_{\text{out}} \) terms to the left,

\[
\frac{dV_{\text{out}}}{dt} e^{t/RC} + \frac{V_{\text{out}}}{RC} e^{t/RC} = \frac{V_{\text{in}}}{RC} e^{t/RC},
\]

(2.11)

then notice the left-hand side is the right-hand side of Eq. (2.10). Thus, we have

\[
\frac{d\tilde{V}}{dt} = \frac{V_{\text{in}}}{RC} e^{t/RC}.
\]

(2.12)

Integrating both sides from 0 to \(t \),

\[
\tilde{V}(t) - \tilde{V}(0) = \frac{1}{RC} \int_0^t V_{\text{in}}(t') e^{t'/RC} dt'.
\]

(2.13)

Using Eq. (2.9) to get rid of \(\tilde{V} \), and multiplying through by \(e^{-t/RC} \),

\[
V_{\text{out}}(t) = V_{\text{out}}(0) e^{-t/RC} + \frac{1}{RC} \int_0^t V_{\text{in}}(t') e^{(t'-t)/RC} dt'.
\]

(2.14) (integrator solution)

Thus, we have a solution as an integral to Eq. (2.5) in terms of an arbitrary input voltage.

2.2.1.2 Constant Input: Exponential Charging

Now let’s take the simple case where the capacitor is initially uncharged [\(V_{\text{out}}(0) = 0 \)], and some constant voltage \(V_{\text{in}} \) appears at the input. Then it comes out of the integral, and we have

\[
V_{\text{out}}(t) = \frac{V_{\text{in}}}{RC} e^{-t/RC} \int_0^t e^{t'/RC} dt' = V_{\text{in}} e^{-t/RC} e^{t'/RC} \big|_0^t.
\]

(2.15)
with final solution

\[V_{\text{out}}(t) = V_{\text{in}} \left(1 - e^{-t/RC} \right). \quad (2.16) \]

(integrator solution, constant input)

This is an exponential rise from 0 to \(V_{\text{in}} \), with time constant \(RC \). That is, looking at \(e^{-t/RC} \) when \(t = RC \), this falls from unity to \(1/e \), or about 37%. So \(1 - e^{-t/RC} \), when \(t = RC \), rises from 0 to \(1 - 1/e \), or about 63%.

One important thing to note about this is that the capacitor tends to smooth the input. Here, we can regard the problem as an input of a sudden voltage step at \(t = 0 \) [which is consistent with \(V_{\text{out}}(0) = 0 \)], and the output is now smoothed over a time scale \(RC \) due to the exponential action of the R–C circuit.

2.2.1.3 Integration

This R–C circuit is called a passive integrator or integrator. The reason is as follows. Going back to Eq. (2.5), if \(V_{\text{out}} \ll V_{\text{in}} \), then we can ignore the \(V_{\text{out}} \) term:

\[\frac{dV_{\text{out}}(t)}{dt} \approx \frac{V_{\text{in}}(t)}{RC}. \quad (2.17) \]

In this case, we can just integrate this equation directly from 0 to \(t \):

\[V_{\text{out}}(t) - V_{\text{out}}(0) \approx \frac{1}{RC} \int_0^t V_{\text{in}}(t') \, dt'. \quad (2.18) \]

Thus, the output is the simple integral of the input signal, up to an offset and a factor of \(1/RC \). In this regime, the capacitor simply stores up the charge that comes in from the resistor. If the capacitor charge, and hence voltage, becomes too large, then this reduces the voltage drop across the resistor, and the simple integral approximation breaks down.

2.2.2 Differentiator

We can get the other simple R–C circuit by interchanging the resistor and capacitor in the integrator, as shown below.

\[\begin{array}{c}
\text{V}_{\text{in}} \\
\hline
\text{C} \\
\hline
\text{I} \\
\hline
\text{V}_{\text{out}} \\
\end{array} \]

\[\begin{array}{c}
\text{R} \\
\end{array} \]

The capacitor charging equation here gives

\[I = C \frac{d}{dt} (V_{\text{in}} - V_{\text{out}}), \quad (2.19) \]

while Ohm’s law gives

\[I = \frac{V_{\text{out}}}{R}. \quad (2.20) \]

Eliminating \(I \), we get

\[\frac{V_{\text{out}}}{R} = C \frac{d}{dt} (V_{\text{in}} - V_{\text{out}}). \quad (2.21) \]

(differentiator ODE)
which is the ODE for this circuit. This circuit is called a differentiator, for reasons analogous to what we saw for the integrator. If $V_{\text{out}} \ll V_{\text{in}}$, then the ODE reduces to

$$\frac{V_{\text{out}}}{R} \approx C \frac{dV_{\text{in}}}{dt}, \quad (2.22)$$

and the output is approximately the derivative of the input.

It is possible to write down a general solution to Eq. (2.21) for the differentiator output in terms of an arbitrary input:

$$V_{\text{out}}(t) = V_{\text{in}}(t) + [V_{\text{out}}(0) - V_{\text{in}}(0)] e^{-t/RC} - \frac{e^{-t/RC}}{RC} \int_0^t V_{\text{in}}(t') e^{t'/RC} dt'. \quad \text{(differentiator solution) (2.23)}$$

The idea is fairly similar to the integrator (the same integrating-factor trick applies); we will leave this as an exercise.

2.3 AC Signals and Complex Notation

Suppose we have an ac signal (alternating-current signal), oscillating at a single frequency ω, described by voltage:

$$V(t) = V_0 \cos \omega t. \quad (2.24)$$

Remember to distinguish angular frequencies from “regular frequencies.” Angular frequencies are usually represented by ω, and are measured in rad/s. “Regular” frequencies are usually represented by f or ν, and are measured in Hz or cycles/s. We can write

$$\omega = 2\pi f \quad \text{(angular frequency)} \quad (2.25)$$

to relate the two. In physics, using the angular frequency saves writing a bunch of factors of 2π, but when quoting a physical value, it’s best to stick to regular frequencies. That is, you could quote an angular frequency by saying “$\omega/2\pi = 100$ Hz” instead of quoting the direct value of ω in rad/s.

As an example, let’s go back to the capacitor charging law,

$$I = C \frac{dV}{dt}. \quad (2.26)$$

Then with the above ac signal, we have

$$I(t) = -\omega CV_0 \sin \omega t = \omega CV_0 \cos(\omega t + \pi/2), \quad (2.27)$$

where in the last step, we changed the negative sine to a phase-shifted cosine. This makes the current easier to compare to the original voltage. In fact, we can see that the current leads the voltage in phase, because the current’s phase is larger by $\pi/2$ than the voltage’s phase. The shape of the current signal is otherwise the same as the voltage, except for amplitude and phase.

2.3.1 Complex Phase

There is a nicer way to handle this monochromatic time dependence, and that is to introduce a complex-number notation. The idea is to represent the time dependence at frequency ω by a factor $e^{-i\omega t}$.

Then define a complex voltage

$$\tilde{V} = V_0 e^{-i\omega t}. \quad (2.28)$$

\[1\] Note that this is a common convention in physics; engineers usually use $e^{j\omega t}$, where $j = -i$. The physics notation comes from the time dependence of a right-going plane wave, $e^{i(kx - \omega t)}$.
The real (physical) voltage is just the real part of this, or
\[V(t) = \text{Re}[\tilde{V}] = \text{Re}[V_0 e^{-i\omega t}] = V_0 \cos \omega t, \]
(2.29)
if \(V_0 \) is real. The imaginary part, \(iV_0 \sin \omega t \), is “carried along” for mathematical convenience, and should be dropped at the end of the calculation to get physical results. Thus, this works for linear circuits (in a nonlinear circuit, a single frequency would be converted into other frequencies, so this analysis is best for a capacitor or resistor, but less so for a diode).

Why is this representation convenient? First, other phases are easy to represent as the phase of the complex coefficient \(V_0 \). For example, we can write a phase \(\phi \) as
\[\tilde{V} = V_0 e^{-i\omega t - i\phi}, \]
(2.30)
and the real part of this is
\[V(t) = V_0 \cos(\omega t + \phi), \]
(2.31)
as we expect for this phase. However, if we absorb the phase \(\phi \) into the complex voltage amplitude \(V_0 \), then \(\tilde{V} \) just looks like \(V_0 e^{-i\omega t} \).

The other nice thing about this complex notation is that derivatives, integrals, and their associated phases are very easy to handle. We are assuming all time dependence is of the form \(e^{-i\omega t} \). Then a time derivative acts on the phase of any object like
\[\frac{d}{dt} e^{-i\omega t - i\phi} = -i\omega e^{-i\omega t - i\phi}. \]
(2.32)
Since this always happens, we can formally identify
\[\frac{d}{dt} \equiv -i\omega, \]
(2.33)
(derivative for monochromatic signals)
provided we are discussing monochromatic signals. Then the capacitor-charging rule (2.26) becomes
\[\tilde{I} = -i\omega C \tilde{V} \]
(2.34)
in complex notation.

2.3.2 Capacitive Reactance

We can interpret the complex form of the capacitor-charging rule in a powerful way. Solving for \(\tilde{V} \), we find
\[\tilde{V} = \tilde{I} \frac{i}{\omega C}, \]
(2.35)
In fact, this looks a lot like Ohm’s law, if we lump everything next to the \(\tilde{I} \) into an effective “resistance,”
\[X_C := \frac{i}{\omega C}. \]
(2.36)
(capacitive reactance)

This is called the capacitive reactance, and has the same units as resistance. It functions as something like a resistance in the “Ohm’s law for capacitors,”
\[\tilde{V} = \tilde{I} X_C, \]
(2.37)
(Ohm’s law for capacitors)
which is the same as Eqs. (2.35) and (2.26). However, because the reactance represents a derivative, it depends on frequency. In fact, what this is saying is that capacitors have very high “resistance” at small frequencies (a capacitor is basically a broken wire, after all, and no current flows once the capacitor is charged), but the capacitor acts like a short circuit at high frequencies, as we will see.
2.3.3 Inductive Reactance

The same idea applies to inductors, which satisfy the “inductive-kick law”

\[V = L \frac{dI}{dt}, \tag{2.38} \]

in terms of the inductance \(L \). Switching to complex notation and replacing the derivative, we have

\[\tilde{V} = -i\omega L \tilde{I}, \tag{2.39} \]

in which case we can define an \textbf{inductive reactance}

\[X_L := -i\omega L, \tag{2.40} \]

so the inductor law becomes

\[\tilde{V} = X_L \tilde{I}, \tag{2.41} \]

or just Ohm’s law with \(X_L \) standing in for a resistance.

2.3.4 Impedance

Since reactances and resistances “look” the same once they’re stuck into Ohm’s law, we can use the more general notion of \textbf{impedance} to represent any of these. To summarize the important points,

- \textbf{Resistances} \(R \) are always real.
- \textbf{Reactances} \(X_C, X_L \) are always purely imaginary, and they depend on frequency as well.
- An \textbf{impedance} can be any combination of resistances and reactances, and can be any complex value, not necessarily purely real or purely imaginary.
- Resistances and reactances are \textit{special cases} of impedances.

The point of all this: for capacitors, inductors, and resistors in ac circuits, \textit{everything} we did for resistive networks carries over to the ac case, in terms of impedances. This includes all the parallel, series, and Thévenin stuff.

2.3.5 Low-Pass Filter

As an example, let’s return to the integrator circuit from Section 2.2.1.

If we think of the capacitor as being a resistor with “resistance” \(X_C \), then this is just a voltage divider. Using the voltage-divider formula (1.18),

\[\tilde{V}_{\text{out}} = \frac{X_C}{R + X_C} \tilde{V}_{\text{in}}, \quad \tilde{V}_{\text{in}} = \frac{1}{1 - i\omega RC} \tilde{V}_{\text{in}}. \tag{2.42} \]
This is a linear relation between the input and output voltage amplitudes, so to simplify the discussion a bit, let’s define the transfer function

\[\tilde{T}(\omega) := \frac{\tilde{V}_{\text{out}}}{\tilde{V}_{\text{in}}}, \]

(transfer function)

which for the low-pass filter is

\[\tilde{T}(\omega) = \frac{1}{1 - i\omega RC}, \]

(transfer function)

from Eq. (2.42). To simplify even more, we can also consider the amplitude transfer function, which discards the phase information:

\[T(\omega) := \left| \frac{\tilde{V}_{\text{out}}}{\tilde{V}_{\text{in}}} \right|. \]

(amplitude transfer function)

Then for the low-pass filter, from Eq. (2.42) we have

\[T(\omega) = \frac{1}{\sqrt{1 + (\omega RC)^2}}. \]

(amplitude transfer function, low-pass filter)

Looking at the asymptotics of the low-pass filter, note that

- As \(\omega \to 0 \) (\(\omega \ll 1/RC \)), note that \(\tilde{T}(\omega) \to 1 \), which means that the integrator does not change the signal at low frequencies.

- For large \(\omega \) (\(\omega \gg 1/RC \)), \(\tilde{T}(\omega) \sim i/\omega RC \). Note that \(i = e^{i\pi/2} \), and so \(ie^{-i\omega t} = e^{-i(\omega t - \pi/2)} \). This means the output phase lags the input phase by 90°. Also, the output amplitude is reduced by a factor \(\omega^{-1} \). This power-law behavior appears as a straight line on a log–log plot, with slope \(-1\).

- The high-frequency scaling of \(\omega^{-1} \) is usually called \(-6\,\text{dB/octave}\). Remember that decibels are defined such that the ratio of two powers in decibels is of the form \(10 \log_{10}(P/P_0) \), and the ratio of two amplitudes is \(20 \log_{10}(V/V_0) \). One octave means a doubling of frequency (from the musical term), and \(\omega^{-1} \) scaling means that doubling the frequency cuts the amplitude in half. In dB, this is \(20 \log_{10}(1/2) = -6\,\text{dB} \).

- The transition point between the low- and high-frequency behavior is called the 3-dB point, or more properly, the \(-3\,-\text{dB point}\). The convention is to define the transition point as the point where \(T(\omega) \) drops from 1 to \(1/\sqrt{2} \) (so that the power transferred drops to \(1/2 \)). Then \(20 \log(1/\sqrt{2}) = -3\,\text{dB} \). We can find the corresponding frequency by setting \(T(\omega_{3\,\text{dB}}) = 1/\sqrt{2} \), which has the solution

\[\omega_{3\,\text{dB}} = \frac{1}{RC}, \quad f_{3\,\text{dB}} = \frac{1}{2\pi RC}. \]

(3-dB frequency)

All this is summarized in the plot below.
Because the integrator “passes” low frequencies without attenuation, and “rolls off” high frequencies, it is called a low-pass filter.

2.3.6 Example Problem: Alternate Scaling

What is the scaling of -6 dB/octave, expressed in dB/decade?

Solution. This is still a scaling of ω^{-1}. A decade is a factor of 10, which means a factor of 10 reduction in amplitude, or $20 \log_{10}(1/10) = -20$ dB, so -20 dB/decade.

2.3.7 Example Problem: High-Pass Filter

Consider the differentiator from Section 2.2.2.

In doing this problem you should see why this is also called a high-pass filter.

(a) Compute $\hat{T}(\omega)$.
(b) Compute $T(\omega)$.
(c) Work out the low- and high-frequency asymptotics of $\hat{T}(\omega)$.
(d) Find $f_{3\text{dB}}$.

Solution.
(a) Using the voltage-divider formula again,

$$
\hat{T}(\omega) = \frac{V_{out}}{V_{in}} = \frac{R}{R + X_C} = \frac{R}{R + i/\omega C} = \frac{\omega RC}{\omega RC + i}. \tag{2.48}
$$

(b) Taking the modulus,

$$
T(\omega) = \frac{\omega RC}{\sqrt{1 + (\omega RC)^2}}. \tag{2.49}
$$
Chapter 2. Capacitors and Inductors

(c) Small ω:

$$\hat{T}(\omega) \sim -i\omega RC.$$ \hfill (2.50)

Since $-i = e^{-i\pi/2}$, this advances the phase, and is a 90° phase lead, like the derivative $d/dt = -i\omega$ (hence, differentiator).

For large ω:

$$\hat{T}(\omega) \approx 1.$$ \hfill (2.51)

Hence, the high-pass filter.

(d) The 3-dB point occurs where $T(\omega) = 1/\sqrt{2}$, which has the same solution

$$f_{3\text{dB}} = \frac{1}{2\pi RC}.$$ \hfill (2.52)

as the low-pass filter.

Overall, the plot for the high-pass filter is basically a mirror image of the plot for the low-pass filter.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{plot.png}
\caption{Plot for high-pass filter.}
\end{figure}

2.4 Phase

One thing that we haven’t paid much attention to yet is the phase shift due to a linear circuit. (We did this just a bit, in looking at the low- and high-pass filters, in the asymptotic limits of low and high frequency, where the phase shift ended up being nothing or $\pm 90^\circ$.) In general, the complex transfer function [from Eq. (2.43)],

$$\hat{T}(\omega) := \frac{\hat{V}_{\text{out}}}{\hat{V}_{\text{in}}},$$ \hfill (2.53)

gives information about both the amplitude [in $T(\omega)$] and phase (via the complex phase). In other words, we can always write

$$\hat{T}(\omega) := T(\omega) e^{-i\phi(\omega)},$$ \hfill (2.54)

where $\phi(\omega)$ is the frequency-dependent phase shift (remember the minus sign here is because of the phase convention in $e^{-i\omega t}$). If $\phi > 0$ at some frequency, we call this a phase lead, whereas $\phi < 0$ is a phase lag.

Now remember that for an arbitrary complex number z, we can write it in polar and cartesian forms as

$$z = r e^{-i\phi} = r \cos \phi - ir \sin \phi =: x + iy,$$ \hfill (2.55)

where r, ϕ, x, and y are all real. Equating real and imaginary parts, we get $x = r \cos \phi$ and $y = -r \sin \phi$, and dividing these equations gives

$$\frac{y}{x} = -\frac{\sin \phi}{\cos \phi} = -\tan \phi.$$ \hfill (2.56)
Solving for ϕ gives

$$\phi = -\tan^{-1} \frac{y}{x},$$

(2.57)

remembering that $\tan x$ is an odd function. Now x and y are respectively the real and imaginary parts of $\tilde{T}(\omega)$, so

$$\phi(\omega) = -\tan^{-1} \left(\frac{\text{Im}[\tilde{T}(\omega)]}{\text{Re}[\tilde{T}(\omega)]} \right).$$

(2.58) (phase shift of linear circuit)

Thus, we have the phase shift at any frequency in terms of the complex transfer function.

2.4.1 Example: Low-Pass Filter

In the low-pass filter, we had from Eq. (2.44)

$$\tilde{T}(\omega) = \frac{1}{1 - i\omega RC}. \quad (2.59)$$

Multiplying upstairs and downstairs by $1 + i\omega RC$, we can rewrite this as

$$\tilde{T}(\omega) = \frac{1 + i\omega RC}{1 + (\omega RC)^2}. \quad (2.60)$$

Now the real and imaginary parts are more obvious, and if we put these into Eq. (2.58), we get

$$\phi(\omega) = -\tan^{-1}(\omega RC). \quad (2.61)$$

(phase shift, low-pass filter)

How does this behave? In the extreme limits:

- For small frequencies $[\omega \ll (RC)^{-1}]$, $\phi \approx -\omega RC$, which is a small (close to 0°) phase lag.
- For large frequencies $[\omega \gg (RC)^{-1}]$, $\phi \approx -\pi/2$, which is a 90° phase lag.

In between, the phase lag moves smoothly between 0 and 90°, as shown in the plot below.

The high-pass filter is very similar, but the phase is 90° for small frequencies (in the “stop band”), and changes to 0° for large frequencies (in the “pass band”).
Chapter 2. Capacitors and Inductors

2.5 Power

Now we arrive at the real meaning of why capacitors and inductors seem a lot like resistors, but with “imaginary resistance.” Remember that the power dissipated in a circuit is $P = IV$. This is still true in an ac circuit, but

$$ P(t) = I(t) V(t) \tag{2.62} $$

is the instantaneous power. This can either be positive or negative; positive means dissipating energy or perhaps storing energy in a capacitor or inductor, while negative means we are getting some stored energy back.

What we’re interested in here is the time-averaged behavior, so we know the net effect of everything that happens over a cycle. So let’s assume a monochromatic voltage and a current, with a possible phase shift ϕ in the current. In real notation, we have

$$ V(t) = V_0 \cos(\omega t) $$
$$ I(t) = I_0 \cos(\omega t + \phi). \tag{2.63} $$

Then the power, time-averaged over one period $T = 2\pi/\omega$ is

$$ \langle P \rangle = \frac{1}{T} \int_0^T V(t) I(t) \, dt. \tag{2.64} $$

Expanding the cosine in the current using the sum-angle formula,

$$ I(t) = I_0 [\cos(\omega t) \cos(\phi) - \sin(\omega t) \sin(\phi)] \tag{2.65} $$

and using this with the above expression for $V(t)$, we get

$$ \langle P \rangle = \frac{I_0 V_0}{T} \int_0^T [\cos^2(\omega t) \cos(\phi) - \cos(\omega t) \sin(\omega t) \sin(\phi)] \, dt. \tag{2.66} $$

In the second term the $\cos(\omega t) \sin(\omega t) = (1/2) \sin(2\omega t)$ averages to zero. In the first term $\cos^2(\omega t) = (1/2) + (1/2) \cos(2\omega t)$, which averages to just $1/2$. Thus,

$$ \langle P \rangle = \frac{1}{2} I_0 V_0 \cos(\phi). \tag{2.67} $$

Now to simplify this a bit more, we want to compare this to time-averaged values of $V(t)$ and $I(t)$ separately. It doesn’t make sense to time average them directly, because they average to zero. But we can compute the rms or root-mean-square values. This just means: square it, time-average it, take the square root, done.

For the voltage, if we square it,

$$ V^2(t) = V_0^2 \cos^2 \omega t, \tag{2.68} $$

then average it,

$$ \frac{1}{T} \int_0^T V^2(t) \, dt = \frac{V_0^2}{2}, \tag{2.69} $$

then take the square root, we get the rms voltage:

$$ V_{\text{rms}} = \frac{V_0}{\sqrt{2}}. \tag{2.70} \quad \text{(rms voltage)} $$

Similarly, for current,

$$ I_{\text{rms}} = \frac{I_0}{\sqrt{2}}. \tag{2.71} \quad \text{(rms current)} $$
2.6 Resonant Circuits

Note that these two rms expressions are valid only for sine waves. Then we can rewrite Eq. (2.67) as

\[\langle P \rangle = I_{\text{rms}} V_{\text{rms}} \cos(\phi). \]

(2.72)

(rms current)

It is common to define the **power factor** as

\[\text{power factor} := \frac{\langle P \rangle}{I_{\text{rms}} V_{\text{rms}}} = \cos(\phi). \]

(2.73)

(power factor)

What does this mean? Breaking this down into cases:

- **cos \phi = 1 (\phi = 0)**: this occurs for a purely resistive load; the maximum power is dissipated here.
- **cos \phi = 0 (|\phi| = \pi/2)**: this is a purely reactive (capacitive or inductive) load, **no power is dissipated** (it is only stored and retrieved over each cycle).
- **0 < cos \phi < 1 (0 < |\phi| < \pi/2)**: there is some reactive component to the load impedance, so some power is dissipated, but not as much as for an equivalently large but real impedance.
- **cos \phi < 0 (|\phi| > \pi/2)**: it’s also possible to have a **negative** power factor, which means the “load” is in fact a generator or EMF source.

Light bulbs and toasters are good examples of resistive loads. An example of a capacitive load is a piezo speaker or buzzer. Examples of inductive (reactive) loads are electric motors or lighting transformers or ballasts for fluorescent lights (the “magnetic” kind, not the “electronic” kind). Inductive loads are important in high-power applications, and the problem is that the power factor can be very small, so that large voltages and currents are needed to drive a motor. This isn’t efficient, because the large voltages and currents cause wasted power to be dissipated elsewhere. A trick to help here is to “correct” the phase of the load impedance by connecting a parallel capacitor, which increases the power factor. It is common in air-conditioning compressor motors to have **two** capacitors, a “start” capacitor and a “run” capacitor. The start capacitor increases the parallel capacitance and hence the power factor when the motor first powers on, to give the motor extra startup torque.

2.6 Resonant Circuits

As another example of mixed impedances, we can consider a resonant filter with a resistor, inductor, and capacitor, as shown below.

![Resonant Circuit Diagram](image)

To analyze this, let’s lump the series inductor and capacitor together into a single element, of impedance

\[Z_{LC} = X_L + X_C = -i \omega L + \frac{i}{\omega C} \]

\[= -i \frac{L}{\omega} \left(\omega^2 + \frac{1}{LC} \right) \]

\[= -i \frac{L}{\omega} \left(\omega^2 - \omega_0^2 \right), \]

(2.74)
where we have defined the resonant (LC) frequency

\[\omega_0 := \frac{1}{\sqrt{LC}}, \]

(2.75)

(LC frequency)

Then we can treat what is left as a voltage divider. The transfer function is

\[\tilde{T}(\omega) = \frac{R}{R + Z_{LC}} = \frac{R}{R - (iL/\omega)(\omega^2 - \omega_0^2)} = \frac{i\omega R/L}{(\omega^2 - \omega_0^2) + i\omega R/L}. \]

(2.76)

Defining the damping constant

\[\gamma := \frac{R}{L}, \]

(2.77)

the transfer function becomes

\[\tilde{T}(\omega) = \frac{i\omega \gamma}{(\omega^2 - \omega_0^2) + i\omega \gamma}. \]

(2.78)

(transfer function, RLC circuit)

This is the same as the response function for a damped harmonic oscillator, with resonant frequency \(\omega_0 \) and damping rate \(\gamma \).

\[\tilde{T}(\omega) = \frac{\omega \gamma}{\sqrt{(\omega^2 - \omega_0^2)^2 + \omega^2 \gamma^2}}. \]

(2.79)

(transfer function, RLC circuit)

Note that on resonance (\(\omega = \omega_0 \)), \(T(\omega = \omega_0) = 1 \) and in fact \(\tilde{T}(\omega = \omega_0) = 1 \), so the signal is transmitted without amplitude reduction or any phase shift. Away from resonance, \(T(\omega) < 1 \), leading to a transmission “peak” around \(\omega_0 \).

2.6.1 Q Factor

A common way to quantify the width of the resonance peak is the Q factor. The idea is to find the \(-3\) dB points of the resonance peaks (compared to the peak) as a measure of the width. Thus, setting \(T(\omega) = 1/\sqrt{2} \),

\[\frac{1}{\sqrt{2}} = \frac{\omega \gamma}{\sqrt{(\omega^2 - \omega_0^2)^2 + \omega^2 \gamma^2}}, \]

(2.80)

we can square this and rearrange to find

\[(\omega^2 - \omega_0^2)^2 = \omega^2 \gamma^2. \]

(2.81)

This is the square of a quadratic equations, with four solutions

\[\omega = \pm \sqrt{(\gamma/2)^2 + \omega_0^2} \pm \frac{\gamma}{2}. \]

(2.82)

We only want the positive solutions, because \(T(\omega) \geq 0 \), and \(T(\omega) \) has the same sign as \(\omega \). Thus,

\[\omega_{3dB} = \sqrt{(\gamma/2)^2 + \omega_0^2} \pm \frac{\gamma}{2}. \]

(2.83)

If we define the width of the peak to be the difference between the \(-3\) dB points,

\[\delta \omega_{3dB} = \gamma. \]

(2.84)

(full width at half maximum)
This is also called the **full width at half maximum (FWHM)** (“half” here refers to the *power* transmission $|T(\omega)|^2$).

\[\omega^2 - \omega_0^2 = \omega \gamma. \]
(2.85)
(amiclue transfer function, RLC circuit)

Then we can write down the Q factor as the ratio of the resonance frequency to the FWHM:

\[Q = \frac{\omega_0}{\delta \omega_{3dB}} = \frac{\omega_0}{\gamma}. \]
(2.86)
(Q factor, RLC circuit)

The “Q” here indicates the “quality” of the resonator: a large Q means a small γ compared to ω_0, and thus a narrow resonance. Actually, this is *not* the definition of the Q factor, but it’s the one that physicists use when dealing with resonances—we’ll come back to the formal definition below.

The transfer function $T(\omega)$ is plotted below for three different values of Q.

Note that asymptotically, the filter rises/falls at ±6 dB/octave, like the low- and high-pass filters.

2.6.1.1 Fundamental Definition

Now to justify the simple formula (2.86) for the Q factor that we used. The more fundamental definition of the Q factor is defined in terms of stored energy in the oscillating circuit and the energy dissipated as follows:

\[Q := 2\pi \cdot \frac{\text{(maximum) stored energy}}{\text{energy loss per oscillation cycle}}. \]
(2.87)
(definition of Q factor)

The capacitor stored energy is, on average,

\[\langle E_c \rangle = \left\langle \frac{1}{2} CV^2 \right\rangle = \frac{1}{2} CV_{\text{rms}}^2, \]
(2.88)

while the inductor’s stored energy is

\[\langle E_L \rangle = \left\langle \frac{1}{2} LI^2 \right\rangle = \frac{1}{2} LI_{\text{rms}}^2. \]
(2.89)

These expressions are actually the same; using $I = C(dV/dt)$ and time-averaging gives $I_{\text{rms}}^2 = \omega^2 C^2 V_{\text{rms}}^2$, and so, for example,

\[\langle E_C \rangle = \frac{1}{2} CV_{\text{rms}}^2 = \frac{1}{2\omega_0^2 C^2} I_{\text{rms}}^2 = \frac{1}{2} LI_{\text{rms}}^2, \]
(2.90)
where we used $\omega^2 = \omega_0^2 = 1/LC$. The power dissipated is
\[
\langle P \rangle = I_{\text{rms}}V_{\text{rms}},
\]
and so the energy lost per cycle is
\[
T\langle P \rangle = TI_{\text{rms}}V_{\text{rms}},
\]
where T is the period. Putting this together,
\[
Q = 2\pi \frac{L I_{\text{rms}}^2}{TI_{\text{rms}}V_{\text{rms}}} = \omega_0 \left(\frac{LI_{\text{rms}}}{V_{\text{rms}}} \right) = \frac{\omega_0 L}{R} = \frac{\omega_0}{\gamma},
\]
in agreement with Eq. (2.86).
2.7 Circuit Practice

2.7.1 Tesla Coil

A nice example of a resonant circuit is the Tesla coil. There are many variations, but the simplest circuit is below. The idea is to put in a fairly “low” voltage (line voltage), and generate an output voltage as large as possible, preferably at least hundreds of kV or even MV.

Here we will go through a basic tesla coil circuit to give you some experience in “reading” a more complex circuit diagram.

![Tesla Coil Circuit Diagram]

Typical designs use a neon-sign transformer in the first stage to boost the voltage to ~6 kV or more. This drives an RLC circuit (the “R” is the wire resistance), which oscillates at a tunable resonant frequency (by tuning the variable inductor). A spark gap also interrupts the RLC circuit; the nonlinear sparking increases dI/dt to help get a larger output voltage in the secondary transformer. The secondary coil is just a long air-core coil with many turns, with a large electrode on top. The capacitance of the secondary circuit is the capacitance due to the windings of the coil, as well as the output terminal (the other electrode being ground). So the secondary circuit is also an RLC oscillator. The primary is tuned to resonate with the secondary. On resonance, the voltage multiplier is not the ratio of turns as in a normal transformer, but rather it turns out to be the ratio of the Q factors of the two RLC oscillators. The oscillators are generally tuned to radio frequencies (hundreds of kHz), which makes the output (relatively) safe for humans.
2.8 Exercises

Problem 2.1

Use the capacitor law $Q = CV$ to show that the effective capacitance of two parallel capacitors is $C_{\text{eff}} = C_1 + C_2$, where C_1 and C_2 are the capacitances of the individual capacitors.

Problem 2.2

Show that the effective capacitance C_{eff} of two capacitors C_1 and C_2 in series is given by $C_{\text{eff}}^{-1} = C_1^{-1} + C_2^{-1}$.

Problem 2.3

Consider the differentiator circuit shown below, where $V_{\text{in}}(t)$ is an arbitrary input voltage.

çe $\begin{align*}
V_{\text{in}} \quad \bigm/ \quad C \quad \bigm/ \quad V_{\text{out}} \\
\downarrow \quad R
\end{align*}$

(a) Show that the differential equation for this circuit is given by

$$
\frac{dV_{\text{out}}}{dt} = -\frac{V_{\text{out}}}{RC} + \frac{dV_{\text{in}}}{dt}.
$$

(2.94)

(We did this in class.)

(b) Use the integrating-factor trick that we used for the integrator circuit (i.e., define $\tilde{V} := V_{\text{out}}e^{t/RC}$, simplify the equation, and integrate from 0 to t) to find the general solution

$$
V_{\text{out}}(t) = V_{\text{in}}(t) + \left[V_{\text{out}}(0) - V_{\text{in}}(0)\right]e^{-t/RC} - \frac{e^{-t/RC}}{RC} \int_0^t V_{\text{in}}(t') e^{t'/RC} dt'.
$$

(2.95)

(c) Write down the solution in the case where V_{in} is turned on suddenly to a constant value from 0, just after $t = 0$. Give a brief, qualitative description of the solution (use a sketch if you need to).

Note: the reason for assuming the turn-on comes just after $t = 0$ is a bit technical, but it’s necessary to get the boundary terms in the general solution to come out right. Basically, the “leading edge” of the input signal is an “interesting” part of the signal (the most interesting, actually), and so we must make sure to capture it in our interval of integration. Equivalently, we could have taken out integration range from $-\infty$ to t, taking our boundary condition to be $V_{\text{in}}(-\infty) = 0$.

Another note: From your solution here, you should see the reason why this circuit is called a “dc block.”

Problem 2.4

Consider the LR circuit below. (See the bottom of the second page for relevant formulae.)

$\begin{align*}
V_{\text{in}}(t) \quad \bigm/ \quad L \quad \bigm/ \quad V_{\text{out}}(t) \\
\downarrow \quad R
\end{align*}$
2.8 Exercises

(a) Is this a high-pass or a low-pass filter? Give a qualitative argument for your answer.

(b) Write down a differential equation relating $V_{in}(t)$ and $V_{out}(t)$.

(c) Solve the equation for an arbitrary input $V_{in}(t)$ (not necessarily a single frequency!), by using the integrating-factor method. You should end up with a solution in the form of an integral over $V_{in}(t)$.

(Hint: it may help to define $\hat{V} := V_{in}(t)e^{\frac{1}{2}(R/L)t}$ for one of the voltages.

(d) Write down the solution for the case where the input voltage is turned on suddenly from 0 to V_0 just after $t = 0$, and then held at V_0 for all $t > 0$. You can assume the input was zero for all times in the past. What is the time constant of your solution?

Problem 2.5

Consider the circuit shown below of two cascaded high-pass filters.

$$
\begin{array}{c}
\text{\textbf{C}} \\
\text{\textbf{R}} \\
\text{\textbf{C}} \\
\text{\textbf{R}} \\
V_{in} \quad V_{out}
\end{array}
$$

Find the (complex) transfer function $\hat{V}_{out}/\hat{V}_{in}$, assuming an input frequency of ω. How does this scale for large and small frequency? (Also give the scaling at small frequencies in dB/octave.)

Problem 2.6

Consider the circuit shown below of two cascaded high-pass filters, separated by a buffer amplifier.

$$
\begin{array}{c}
\text{\textbf{C}} \\
\text{\textbf{R}} \\
\text{\textbf{C}} \\
\text{\textbf{R}} \\
\text{\textbf{G}} \\
\text{\textbf{R}} \\
\text{\textbf{R}} \\
V_{in} \quad V_{out}
\end{array}
$$

The buffer amplifier has two important properties: the input (left-hand-side connection) draws no current (and thus produces no load on the first RC filter), and the output voltage is equal to the voltage at the input.

(a) Find the (complex) transfer function $\hat{V}_{out}/\hat{V}_{in}$, assuming an input frequency of ω. Examine the scaling behavior for large and small frequencies, and give the scaling at small frequencies in dB/octave.

(b) Make a (log-log) plot of the amplitude transfer function $T(\omega) = |\hat{V}_{out}(\omega)/\hat{V}_{in}(\omega)|$. Also include on the same plot the corresponding transfer functions from the previous problem, and for a simple high-pass filter.

(c) Make another plot of the phase of the output compared to the input for the same three circuits as in (b). That is, if we write out the amplitude and phase of the transfer function as

$$\hat{T}(\omega) = T(\omega)e^{-i\phi},$$

then make a plot of ϕ vs. ω. Here, use a logarithmic frequency axis, and a linear phase axis. Be clear about the nature of the phase shift (lead vs. lag).

Note: use any program you like for plotting. For a plotting tutorial in Mathematica, see
In Mathematica, use \texttt{LogLogPlot} for a log-log plot and \texttt{LogLinearPlot} for a log plot in the x-direction instead of \texttt{Plot}.

Problem 2.7

Consider the circuit below, consisting of a resistor of resistance R, and a “schmapacitor” of “schmapacitance” S.

The schmapacitor is defined by the relation

$$I = S \frac{d^3V}{dt^3},$$

where I is the schmapacitor current and V is the voltage drop across the schmapacitor.

(a) Is this a high-pass or a low-pass filter? Give a qualitative argument for your answer.

(b) Derive the transfer function $[\tilde{T}(\omega)]$ for the circuit.

(c) Derive the amplitude transfer function $[T(\omega)]$ for the circuit.

(d) Give the scaling of the transfer function in the “stop band” of the circuit [i.e., the asymptotic region where $T(\omega)$ is small]. Express your answer in dB/octave.

(e) What is the asymptotic phase in the stop band? Is it a phase lead or a phase lag?

(f) Derive an expression for the -3-dB frequency $f_{3\text{dB}}$ of the circuit.
Chapter 3

Diodes

3.1 Ideal Diode

Diodes are useful circuit elements: in the simplest sense, they act as one-way valves or “trapdoors” for electrons and thus for electrical current. Schematically, the following symbol represents them:

\[I \rightarrow \text{anode} \quad \text{cathode} \]

The two terminals are called the anode and cathode. The rules that govern the ideal diode are as follows:

1. If \(V_{\text{anode}} > V_{\text{cathode}} \), then the diode acts like a short circuit: lots of current can flow. In this case, the diode is said to be forward-biased.

2. If \(V_{\text{anode}} \leq V_{\text{cathode}} \), then the diode acts like an open circuit: no current flows at all. In this case, the diode is said to be reverse-biased.

Of course, the situation with real diodes is more complicated, and we’ll get to that. For now, a good mnemonic to remember the direction of current flow is that the diode symbol makes an “arrow” in the direction of the current flow (towards the cathode). Also, in the lab, a typical “signal diode” (for mA-level currents) looks schematically like this:

\[\text{anode} \quad \square \quad \text{cathode} \]

There is usually a band (not always dark) that marks the cathode end; you can think of the band as being a “minus sign” that marks the cathode.

The diode is obviously a nonlinear device, since voltage is not simply proportional to current. Since Ohm’s law \(V = IR \) does not hold in a simple way with constant \(R \), so a diode is an example of a non-Ohmic device.

3.2 Vacuum Diodes

The name of the diode comes from the original vacuum-tube realization of a diode, which has two electrodes (hence, the “di”). The cathode is a heated electrode that “boils off” electrons; whether the electrons make it to the anode—and hence whether current flows—is determined by the relative voltage on the anode, because the anode with either repel or attract the electrons from the cathode. (Think about it to see that the current flows only with the correct voltage polarity.)
3.3 Semiconductor Diodes

By far the most important realization of a diode is using semiconductor materials, so that’s what we’ll concentrate on here. Roughly speaking, a semiconductor is a material somewhere in between a conductor and an insulator. In an insulator, electrons are bound in place, so they can’t move around to form a current. In a conductor, electrons move freely, and current flows (there is little resistance). In a semiconductor, the electrons are mostly bound, but a few are thermally activated into conducting states, so conduction can happen.

But more important are doped semiconductors, where impurities are added to enhance conduction. There are two types:

1. In n-type semiconductors, the semiconductor is doped with impurities that introduce excess electrons (called n-type carriers, “n” for “negatively charged”). The n-type carriers do the conducting.

2. In p-type semiconductors, the semiconductor is doped with impurities that introduce a deficit of electrons. The absence of an electron is something like a positive charge, and is called an electron hole, or just hole. (These are then called p-type carriers, “p” for “positively charged”). The p-type carriers (holes) do the conducting here.

A semiconductor diode is a junction between p-type and n-type semiconductors (called a p-n junction). If we first consider separate p- and n-type semiconductors, we get something like this:

![Diagram of p-n junction](image)

Note that despite the presence of the carriers in each semiconductor, the semiconductors are electrically neutral.

Now let’s smoosh these together and see what happens. There is now a p-n junction, the charges are free to diffuse across due to random, thermal motion.

![Diagram of p-njunction with depletion zone](image)

(no depletion zone)

Remember that the semiconductors were neutral before we put them together, so now that carriers are moving across, this sets up net charges on either side of the junction, which creates an electric field. All this is summarized in the diagram below.

![Diagram of p-n junction with depletion zone and electric field](image)
Note that for any carriers that diffused across the junction, the electric field tries to “restore” them back to their original home. So the diffusion continues until the electric field builds up to the point where just balances the tendency for more carriers to diffuse across the junction. Meanwhile, the n-type carriers that make it across to the p-type material will **annihilate** the p-type carriers (electron + hole = nothing), and the same thing happens for p-type carriers that make it across the junction to the n-type material. So there is a region around the junction called the **depletion zone**, where there are no carriers. Note that in this equilibrium state, no net current can flow, because there are no carriers to transport charge (current) across the depletion zone.

Now let’s argue that this p-n junction realizes the diode as shown below.

First, let’s do the **reverse-biased case**, where no current should flow. That is, suppose we set the anode to 0 V, and bring the cathode up by +V relative to the anode. Then the situation is shown in the diagram below.

In this case, the electric field due to the applied voltage **adds** with the electric field from the carrier diffusion. This also pulls the p-type carriers towards the anode (the terminal on the p-type material), and n-type carriers towards the cathode. The net effect is just to **increase** the width of the depletion zone.

Now let’s do the **forward-biased case**, where the diode should conduct. So we bring the anode to a voltage +V relative to the cathode. Now the external field due to this potential difference points from left to right, and **cancels** the electric field due to carrier diffusion, and it tries to make the carriers in each material move towards the junction. The net effect is to **shrink** the depletion zone. Once a **sufficiently strong voltage** is in place, the depletion zone completely disappears, and a net current can flow, as shown below.

Note that the current here involves each type of carrier moving towards the junction, where it annihilates one of the opposite type.

A few typical diodes are shown in the photo below.
From left to right, these are: 1N914B (signal diode), 1N4001 (1-A, general-purpose rectifier), MR752 (6-A, 200-V rectifier), GI754 (6-A, 400-V rectifier). All cathodes point to the upper-right-hand corner.

3.3.1 Schottky Diodes

A variation on the semiconductor diode is the **Schottky diode**, which replaces the p-type material with a conductor. The metal-semiconductor junction is called a **Schottky barrier**. The operation is similar, the advantages being faster switching between forward- and reverse-biased modes, and lower forward voltage drop (as we will discuss shortly). The Schottky diode has a modified symbol to distinguish it from a “regular” diode, as shown below.

![Schottky diode symbol](image)

However, it is functionally the same as a semiconductor diode.

3.4 Current–Voltage Characteristics

All these effects lead to a more complicated relation between voltage and current. Below is a schematic plot of the V–I relation for a diode.

![Plot](image)

This is the *forward* current I plotted against the *forward* voltage V; negative values of course indicate that the voltage/current are going in the reverse-biased direction. There are a few features to notice here.

1. **Forward conduction.** As the diode is forward-biased, the forward current rapidly (in fact, exponentially) increases. But for any forward current, there is a **forward voltage drop**—remember this is
needed to squish the depletion region down to nothing so the diode can conduct. A handy number to remember for quick calculations is $0.7\,\text{V}$ for the voltage drop, for forward-biased silicon diodes. The drop is somewhat more for high-power diodes, somewhat less for Schottky and germanium diodes. For example, the common 1N914 (silicon signal diode) has a forward voltage drop of $0.7\,\text{V}$ at $10\,\text{mA}$, dropping to $0.6\,\text{V}$ at $1\,\text{mA}$ and going up to $0.9\,\text{V}$ at $100\,\text{mA}$. The 1N5711 Schottky diode (small-signal diode, rated for $15\,\text{mA}$ maximum current) has a similar drop of about $0.7\,\text{V}$ at $10\,\text{mA}$, but a comparatively lower drop of $0.4\,\text{V}$ at $1\,\text{mA}$. These numbers are all temperature-dependent, but the values here are at 25°C, and vary from device to device.

2. **Reverse leakage.** When the diode is reverse-biased, the current is not *completely* blocked, but some current flows. This is roughly constant over a wide range of reverse-bias voltages, and is usually labelled I_s, with the “S” for *saturation current*. This is also called, more obviously, the *reverse-leakage current*. This is typically $\sim 10\,\text{nA}$ for silicon and Schottky diodes.

3. **Reverse breakdown.** If the reverse-bias voltage is sufficiently large, the insulating properties of the diode break down (like any insulator), and the diode conducts. The voltage at which the diode starts to conduct is the *reverse-breakdown voltage*, and is at least $100\,\text{V}$ for the 1N914 and at least $70\,\text{V}$ for the 1N5711.

3.4.1 Diode Law

Neglecting the reverse breakdown, the diode $V-I$ relation is reasonably well-described by the *diode law*,

\[
I = I_s \left(e^{V/NT} - 1 \right),
\]

where I_s is the saturation current that we already discussed, V_T is the *thermal voltage*

\[
V_T := \frac{k_B T}{e},
\]

$k_B = 1.381 \times 10^{-23}\,\text{J/K}$ is the *Boltzmann constant*, $e = 1.602 \times 10^{-19}\,\text{C}$ is the *fundamental charge* (magnitude of the electron charge), and T is the absolute temperature. The thermal voltage is $25.69\,\text{mV}$ at 25°C. Also, n is the *ideality factor*, which typically falls in the range of 1 to 2, and is a sort of “fudge factor” for real junctions. Often this is just set to 1 for simplicity, in which case the diode law becomes the “ideal diode law.”

Note that the diode law is only really valid below the “knee” of the $V-I$ curve, before the current starts to really take off. As an example, consider the plot below of two models for the 1N914 at 25°C.
The “diode law” (dashed) curve shows the diode law with \(I_s = 6.2229 \times 10^{-9} \) and \(n = 1.9224 \). The “typical” (solid) curve shows a more complete diode model.\(^1\) The simple model overestimates the conducted current at larger forward voltages.

3.5 Zener Diodes

A Zener diode (pronounced ZEE-ner) is a regular diode with a carefully engineered reverse-breakdown voltage, typically in the range of 3–100 V. The Zener diode has a special symbol, as shown below.

\[
\text{anode} \quad \rightarrow \quad \text{cathode}
\]

The Zener diode is mainly useful as a voltage regulator. A typical circuit is shown below.

\[
\begin{array}{c}
+15V \\
R \\
1N4733
\end{array}
\]

The resistance \(R \) here depends on the intended load. The idea is that the Zener diode “wants” to operate at the reverse-breakdown voltage (5.1 V for the 1N4733), and it draws just the right amount of current to make the voltage drop across \(R \) equal to the difference between the supply (+15 V) and output (+5.1 V) voltages. How does the Zener diode “know” how much current to draw? You should try thinking this through: Think of the reverse-biased diode as a variable resistor, and think of the circuit as a voltage divider. The diode has large resistance for small currents, and small resistance for large currents. The only self-consistent point is for the diode to drop the breakdown voltage, which is the transition between these two regimes.

The main problem with this circuit is that, as we have seen, the properties of diodes depend on temperature. A good solution when you need a precise voltage reference is a temperature-stabilized Zener diode, like the LM399, which has a breakdown voltage of 6.95 V, and an integrated oven to keep the Zener’s temperature constant.

\[
\begin{array}{c}
+15V \\
R \\
LM399
\end{array}
\]

\(^1\)This is the SPICE (circuit-simulator) model for the 1N914 from Central Semiconductor; the \(I_s \) and \(n \) values in the diode law are the same as the parameters in the SPICE model.
The extra two connections are the power-supply leads for the oven heater. Note that this circuit can draw large (up to 200 mA) for the first few seconds after the circuit is turned on, while the oven temperature stabilizes. You can then obtain other reference voltages using a voltage divider or an op-amp circuit to multiply the voltage by a known factor—something we will get to later.

3.6 Rectifier Circuits

3.6.1 Half-Wave Rectifier

One of the main uses of a diode is as a **rectifier**, or something that changes an alternating-current (ac) signal into a direct-current (dc) signal. This is especially useful for changing the line voltage (120 V in the U.S.) into a dc voltage (e.g., for a power supply), after stepping the line voltage down (or up) by some factor using a transformer. The simplest example of a rectifier circuit is the **half-wave rectifier**, which uses only a single diode.

![Half-Wave Rectifier Diagram](image)

Here, the supply (with amplitude V_{in}) creates a voltage across the load (represented schematically here by a load resistor R_{load}); since current only flows in one direction, the supply can only impose a positive voltage across the resistor, and the voltage during forward conduction is always a diode drop below the voltage of the power supply.

![Waveform Diagram](image)

This is not very much like a dc voltage, and not a very good dc power supply. The trick to getting a better dc signal is to add a smoothing capacitor across the load, as in the schematic below.

![Capacitor Addicted Rectifier Diagram](image)

Then the circuit charges the capacitor through the diode to a maximum of V_{in}, less the diode drop. When the rectified voltage falls away, the capacitor “props up” the output voltage, which decays exponentially with a $1/e$ time of $R_{load}C_{filter}$. The net result is shown below.
The resulting wave has **ripple**, and choosing the RC time to be as long as possible makes the ripple very small (for good power supplies, the ripple should be of order mV or tens of mV, depending on the current and application). Smaller load resistances (i.e., loads drawing more current) produce more ripple, while larger smoothing capacitors reduce the ripple.

3.6.2 Full-Wave Rectifier

A major problem with the half-wave rectifier is the long time between rectified peaks, making it difficult to get small ripple. A solution to this is the **full-wave rectifier**, which uses four diodes as shown below.

This passes both the positive and negative peaks, as shown below. Trace the current through the diodes on both phases of the input to convince yourself that this works out.

We don’t “waste” the negative peaks here, but the price is that we lose two diode drops from the input voltage. Also, note that we are plotting the **voltage difference** across the load resistor; the absolute voltages on either end are more complicated, because the output voltage is referenced to the input voltage in a way that depends on which diodes are conducting at the moment. If the input voltage is **floating** (i.e., not referenced to ground, which is usually the case of a transformer output), we can instead ground the − side of the load, in which case the **absolute** output voltage goes from 0 to $V_{\text{in}} - 1.4 \, \text{V}$.

Adding a capacitor to this setup, we get a decent, filtered power supply.
Again, we lose almost another volt compared to the half-wave rectifier, but for the same load and filter capacitor, we get much less ripple. Yet better power supplies (with smaller ripple) can be realized by adding a linear regulator IC.

3.7 Circuit Practice

3.7.1 Cockcroft–Walton Multiplier

Explain how the circuit below, the **Cockcroft-Walton multiplier**, works. The multiplier is driven by an ac source of amplitude V_{in}, and each “stage” of the multiplier consists of two capacitors and two diodes. The output after N stages is (in steady state) a dc voltage of $2NV$. Three stages are shown in the example below.

Assume ideal capacitors and diodes (and think about why it is reasonable to ignore the forward voltage drop of the diodes in this kind of circuit).

Solution. The idea in multiplying voltages is to get high voltages, so the input ac voltage would be of the order of 1 kV, in which case a diode drop of 0.7 V makes little difference.

To analyze the circuit, we will first trace the voltages when the input voltage has swung low. Current flows across the first diode to charge the first capacitor.

Then, on the positive-voltage phase, the absolute voltage of the first capacitor increases, but the voltage across it stays the same. Current flows to charge the second capacitor.
The process continues. In steady state, to balance any leakage of current from the output terminal, current would flow as follows in the negative-input phase,

```
\begin{align*}
-V_{in} & \quad 0 \quad 2V_{in} \quad 4V_{in} \\
\uparrow & \quad \downarrow \quad \downarrow \quad \downarrow \\
\end{align*}
```

which switches to the following during the positive-input phase:

```
\begin{align*}
+V_{in} & \quad 0 \quad 2V_{in} \quad 4V_{in} \\
\uparrow & \quad \downarrow \quad \downarrow \quad \downarrow \\
\end{align*}
```
3.8 Exercises

Problem 3.1

Consider the zener-diode voltage regulator shown below.

![Zener Diode Diagram]

Suppose you design this circuit to drive (supply) a load resistance R_L.

(a) What is V_{out}?

(b) If $R = 1 \text{k} \Omega$, what is the smallest R_L that the circuit can handle without “sagging” the output voltage?

(c) What should be the power rating of the resistor R? Be explicit about your assumptions.

Problem 3.2

Consider the half-wave rectifier circuit shown below. The ac input voltage to the circuit is a 60 Hz signal from a power transformer.

![Half-Wave Rectifier Diagram]

(a) What is the peak output voltage across the load resistor, assuming $R_L = 10 \Omega$? Account for the voltage drop across the diode (look it up!).

(b) Estimate the voltage ripple, assuming the same load resistance.

Problem 3.3

Sketch the analogous full-wave-rectifier-bridge circuit to the circuit in Problem 2, and repeat the calculations.

Problem 3.4

Consider the circuit below. Give the output voltage V_{out} in terms of the input voltages V_1 and V_2. You can assume ideal diodes (no forward voltage, breakdown, or leakage).
Chapter 3. Diodes

\[V_1 \quad V_2 \quad V_\text{out} \quad R \]
Chapter 4

Bipolar Junction Transistors

4.1 Overview

A bipolar junction transistor (BJT) is our first example of a device that is both nonlinear and active—active, in the sense that the device should be “powered,” or to say it another way, it uses one signal to modify another signal. At first, it’s a bit counterintuitive to have a device with three terminals, but roughly speaking, you can think of it functionally as having a pair of input terminals and a pair of output terminals, but one terminal is “shared” between the input and the output.

BJTs come in two flavors: NPN and PNP, which refers to the stack of doped semiconductors that form the transistor. The schematic construction of the NPN transistor is shown below: the name just gives the order of the layers from top to bottom (or bottom to top).

That is, the NPN transistor is a p-type semiconductor sandwiched in between two n-type semiconductors. However, the important thing is that the inner p-type layer is thin and lightly doped. The light doping means that there are relatively few p-type carriers in the p-type layer. The PNP transistor is pretty much the same thing, except for interchanging p-type and n-type layers. All the analysis here will go through to that case under this interchange, provided we also reverse all the currents and voltage differences. Thus we’ll stick to the NPN case here (which is the more common case; usually, PNP s are only found when they are paired in some way with an NPN, in part because NPNs are easier to make well).

The schematic symbols for NPN and PNP transistors are shown below.
Note that the collector is distinguished from the emitter by the arrow, and the direction of the arrow distinguishes NPN from PNP transistors.

Looking at the BJT as a stack of alternately doped semiconductor layers, we can see that BJTs each have two p-n junctions, and we might expect these junctions to act like diodes. That is, you could reasonably expect BJTs to act like two diodes tied together, as shown below.

And, in fact, if you use a multimeter to measure continuity between the various leads, you will see continuity and voltage drops consistent with this simple “diode model.” (This is in fact a good starting point for diagnosing a transistor that may be past its prime.) However, the difference is that the middle layer is a single region, and its thinness and low carrier density make it behave quite differently than a Siamese-twin pair of diodes.

4.2 Usage

The normal *modus operandi* of the (NPN) transistor is as shown below (again, the currents and voltage differences are reversed for the PNP).

Note the following:

1. All current goes out the emitter.
2. The base–emitter current I_B *controls* the collector–emitter current I_C.
3. For the currents to flow in the intended directions, $V_B > V_E$ and $V_C > V_E$.
4. The B–E junction acts like a *forward*-biased diode, and conducts current like a diode would (the arrow in the transistor symbol looks like a diode).
5. The C–E junction involves a *reverse*-biased diode. It *blocks* current, unless the B–E current overrides the blocking behavior.
6. For any device, there are limits to how large I_B, I_C, and V_{CE} can be, and these limits are different for each species of transistor.

7. Under all the conditions above, the two currents are proportional:

$$I_C = \beta I_B.$$ \hspace{1cm} (4.1) \hspace{1cm} \text{(transistor current-control relation)}

The parameter β is roughly constant, and as a simple value for estimating what happens in transistor circuits, you can assume $\beta \sim 100$. This parameter varies among different transistor species and even among individuals of one species. On transistor data sheets, β is often denoted by h_{BE}.

4.3 Mechanism

To understand why the transistor works the way it does, let’s go back to the diagram of the stack of n- and p-type materials in the NPN transistor. The two p-n junctions set up two depletion zones, with corresponding electric fields as shown below.

The two depletion zones block any C–E current from flowing (in either direction). Then with voltages set up as $V_{BE} > 0.6$ V and $V_{CE} > 0$ (actually V_{CE} needs to be at least roughly 0.2 V), then the B–E depletion zone disappears, and the C–E depletion zone grows a bit.
Then, basically two things happen with the carriers, as in the diagram above.

1. Since current is flowing from base to emitter, there are n-type carriers flowing from the emitter to the base (the negative charge means they are flowing against the current). Remember the p-type region is lightly doped, so it is mostly n-type carriers that are transporting the current.

2. Many, or possibly most of, the n-type carriers never make it to the base terminal. What happens is that, once they are pulled into the p-type region by V_{BE}, they can diffuse into the C–B depletion zone, in which case the electric field in the depletion zone sweeps them into the collector’s n-type region, leading to $I_C > 0$ (provided $V_{CE} > 0$, so the swept-up n-type carriers are removed through the collector terminal).

The transistor is a really beautiful device.

Note that from our description and diagrams, it would seem that the emitter and collector are basically equivalent, and it is true that they are very similar. However, in a real transistor, the geometry is very different, and the emitter material is heavily doped compared to the collector material (since it “produces” the carriers needed to transport the current). So while it is possible to operate a transistor with emitter and collector interchanged, it would not work nearly as well (the β in this configuration would be much smaller, for example).

4.4 Packaging

Transistors come in many shapes and sizes. The common TO-92 plastic case (appropriate for low-power signal transistors) is shown in the photograph below, with typical connections.
Note that these connections are common with 2N-series transistors in TO-92 packages, but they are not universal.\(^1\)

4.5 Transistor Switch

Below is the first example circuit we'll do with transistors: using a transistor as a switch, here to turn a light-emitting diode (LED) on or off.

![Transistor Switch Circuit](image)

This switch works as advertised (for the stated input voltages) for a resistance \(R \) around 1 k\(\Omega \). To learn more about transistor operation, we will consider this resistance and a larger value for the base resistance to see two different regimes of transistor operation. This circuit behaves the same for any of a number of small-signal NPN transistors (2N2222A, 2N3904, 2N4401, etc.).

4.5.1 Saturation Mode

First, let’s consider the case where \(R = 1 \text{ k}\(\Omega \)\), which would be a typical way to design this switch. The “off” case is pretty easy: with 0 V input, \(I_B = 0 \), and thus \(I_C = 0 \) from Eq. (4.1), so the LED is off.

Now for the “on” case, with 5 V input. To start, the B–E junction of the transistor acts like a diode. Usually, the base current will be low, because it will switch a current \(\beta \) times larger, from Eq. (4.1). So we will assume diode drop across the B–E junction, but on the low end, say \(V_{\text{BE}} = 0.6 \text{ V} \). Then the 1-k\(\Omega \) resistor drops the rest of the input voltage, or 4.4 V. This gives a base–emitter current

\[
I_B = \frac{4.4 \text{ V}}{1 \text{ k}\(\Omega \)} = 4.4 \text{ mA},
\]

which will control the collector current \(I_C \).

Before considering the transistor action, let’s consider the LED. LEDs have a higher forward voltage than signal diodes. Typical values for “bright” operation of a “T-1\(\frac{3}{4} \)” sized LED (the most common size, with a plastic bulb 5 mm in diameter) depend on color:

- For red, orange, yellow, green-yellow: forward current \(I_F = 20 \text{ mA} \); forward voltage \(V_F = 1.8 \text{ V} \).
- For green, blue, white, UV: \(I_F = 20 \text{ mA} \); \(V_F = 3.3 \text{ V} \).

“High-brightness” LEDs can have larger forward currents, but these values are good for “normal” LEDs. We have a red LED, so \(V_F = 1.8 \text{ V} \). If we think of the transistor as a switch that connects C–E (this is not quite true, more on this shortly), then the resistor drops \(5 - 1.8 = 3.2 \text{ V} \); with a 330-\(\Omega \) resistor, this gives \(I_F \) as a bit under 10 mA, which is reasonable, but hardly pushing the LED’s brightness.

\(^1\)In fact, the specific transistors in the photo should be wired \textit{backwards} from this labeling. These are P2N2222A transistors by ON Semiconductor, and for some reason they decided to wire these CBE as viewed from the front, despite all other 2N2222A’s in this package being wired EBC.
But what does the transistor want to do? Eq. (4.1) says that I_C should be β times I_B; assuming $\beta \sim 100$, then $I_C \sim 440$ mA. But, as we found out, with the LED and resistor voltage drops, I_C can’t possibly be this high (the transistor can’t have a negative voltage drop, for example). In fact, the transistor drop V_{CE} can’t be less than about 0.2 V, so the resistor actually drops about 3.0 V. With the 330-Ω resistor, this gives $I_C = I_F \approx 9.1$ mA.

This mode of transistor operation is called saturation mode: as a switch, the transistor is “wide open,” and the current I_C is limited by external elements (here, LED and 330-Ω resistor), not the transistor.

Of course, the current-limiting resistor could be reduced somewhat (say, to 150 Ω) for a brighter LED here.

The important thing to notice in this example is that a high-impedance source (1 kΩ, from the base resistor, plus any impedance of the input voltage source) controls a higher-current load via the transistor.

4.5.2 Forward-Active Mode

Now suppose $R = 100$ kΩ in the same circuit. Then the base current is two orders of magnitude smaller, or 44 µA. The transistor tries to set $I_C \sim 100 I_B = 4.4$ mA, and now this is certainly possible for the transistor. Just to double check, the voltage drop across the 330-Ω resistor is $330 \, \Omega \times 4.4$ mA = 1.5 V. Then removing the resistor and LED drops, $V_{CE} = 5$ V − 1.8 V − 1.5 V = 1.7 V. Now it is the transistor that is regulating the current via its voltage drop. This is called the forward-active mode of the transistor, and it is in this regime that the transistor can act as an amplifier with some gain (the saturation mode is a kind of “infinite-gain” amplification).

4.5.3 Summary

Let’s just summarize the difference between saturation and forward-active modes in the switching circuit, because this can be a bit confusing the first time through, and it’s important to understand the difference intuitively.

In forward-active mode, the base current I_B controlled the collector current I_C (and thus the LED current) via the relation $I_C = \beta I_B$. The transistor “regulates” I_C by adjusting the voltage V_{CE} to the proper amount. We know the current is set by the voltage drop across the 330-Ω resistor: the larger the resistor drop, the larger the current. This means that V_{CE} is smaller for larger currents, because more of the supply voltage must be taken up by the resistor.

In saturation mode, the transistor relation doesn’t hold. That’s because the base current makes the transistor “want” more current than the 330-Ω resistor will allow. The transistor normally tries to drive more current by reducing V_{CE}, but it can’t do so below zero (or more precisely, below about 0.2 V if $I_C > 0$), so $I_C < \beta I_B$.

So you can really think of the transistor relation as being more like $I_C \leq \beta I_B$. Both the transistor and an external element (resistor) will want to limit the current; whichever wants less current is the one that wins.

4.6 Emitter Follower

As our second transistor circuit, we’ll continue with a transistor in forward-active mode. Below is the emitter follower, where the output voltage is intended to “follow,” or match, the input voltage. It is an amplifier in the sense of being an amplifier for current.
Note that we are introducing some new notation here. In addition to the base and collector currents in the diagram on p. 66, we are introducing the emitter current I_E. Also, the power-supply voltage is labelled $+V_{CC}$; the plus denotes a positive voltage with respect to ground and the “C” subscript denotes this is intended to power the collector terminal (two C’s distinguishes this from the voltage V_C at the collector, which is the same in this circuit, but not always).

We will consider the signals to be ac signals, with some dc bias that we don’t care much about (except the biases are necessary for the circuit to work, since a single transistor can only handle signals of one polarity). Thus, let’s set

$$V(t) = V_0 + v(t), \quad I(t) = I_0 + i(t),$$

where V_0 and I_0 are the dc biases, and the (small) ac signals are $v(t)$ and $i(t)$. This simplifies the analysis a bit, because for example we can write the output voltages as

$$V_{out} = V_E = V_B - 0.6 \text{ V},$$

but dropping the dc offsets, this becomes

$$v_{out} = v_E = v_B.$$ \hfill (4.5)

The ac voltage gain for the circuit is defined by

$$G := \frac{v_{out}}{v_{in}} = \frac{v_E}{v_B} = 1,$$

so this is indeed a unity-gain circuit (voltage follower).

To compute the current gain, we can relate the emitter current to the base and collector currents by

$$I_E = I_B + I_C = I_B + \beta I_B = I_B(\beta + 1),$$

where we used Eq. (4.1). In terms of ac components, this is

$$i_E = i_B(\beta + 1),$$

so the ac current gain is $(\beta + 1)$.

4.6.1 Input and Output Impedance

Since the emitter follower has current gain, it can allow a source with high output impedance to drive a lower-impedance load. To quantify this, let’s define Z_{load} to be the impedance at the transistor emitter, which is R in parallel with any other load impedance attached to the V_{out} terminal. Then we can calculate

$$i_B = \frac{i_E}{\beta + 1} = \frac{v_B}{Z_{load}(\beta + 1)} = \frac{v_B}{Z_{load}(\beta + 1)}.$$ \hfill (4.9)
Here, we used the current gain (4.8), then $v_R = i_R R$, then $v_R = v_h$. Then we can define the **input impedance** of the amplifier by

$$Z_{\text{in}} := \frac{v_{\text{in}}}{i_{\text{in}}}. \quad (4.10)$$

(input impedance, definition)

Writing the input voltage and current in terms of the base voltage and current,

$$Z_{\text{in}} = \frac{v_B}{i_B}, \quad (4.11)$$

and then using Eq. (4.9),

$$Z_{\text{in}} = Z_{\text{load}} (\beta + 1). \quad (4.12)$$

(input impedance, emitter follower)

We can interpret this as follows: *Without* the transistor, the input V_{in} would have to “drive” the load impedance (the resistor R and other connected stuff) directly. The effect of the transistor is to multiply the resistor value by $(\beta + 1)$, so effectively the impedance is about 100 times larger, and thus much easier to drive.

We can also define an **output impedance** as

$$Z_{\text{out}} := \frac{v_{\text{out}}}{i_{\text{out}}}. \quad (4.13)$$

(output impedance, definition)

We can manipulate this a bit,

$$Z_{\text{out}} = \frac{v_{\text{in}}}{i_R} = \frac{v_{\text{in}}}{i_B (\beta + 1)}, \quad (4.14)$$

and then defining the source impedance

$$Z_{\text{source}} := \frac{v_{\text{in}}}{i_B}. \quad (4.15)$$

(impedance of input source)

(i.e., the impedance of whatever is driving the transistor base at voltage V_{in}), the output impedance becomes

$$Z_{\text{out}} = Z_{\text{source}} \frac{1}{\beta + 1}. \quad (4.16)$$

(output impedance, emitter follower)

We can interpret this as follows: *Without* the transistor in place, the load would be connected directly to the source, loading it down somewhat. The transistor effectively divides the source impedance by $(\beta + 1)$, making the source effectively “stiffer” (closer to an ideal voltage source) by about 100-fold, as “seen” by the load.

4.7 Transistor Current Source

The next circuit we will consider is the **transistor current source**. This is more of a prelude to the transistor amplifier that is coming up next, but this is also useful in its own right. A **current** source is a circuit that maintains a constant (programmed) current, independent of voltage, within limits of course. In the circuit below, the goal is to maintain a constant current through the load, independent of the load impedance.
In this case, the transistor is maintaining the collector current I_C. To see that this works, note that the base and emitter currents are related as usual by

$$V_E = V_B - 0.6 \text{ V}. \quad (4.17)$$

Then the emitter resistor R_E sets the emitter current via

$$I_E = V_E/R_E = (V_B - 0.6 \text{ V})/R_E. \quad (4.18)$$

Remember that the base and collector currents add to form the emitter current. Since $I_C = \beta I_B$, then

$$I_E = I_C + I_B = I_C (1 + \beta^{-1}) \approx I_C,$$

provided β is large. Thus,

$$I_C \approx (V_B - 0.6 \text{ V})/R_E. \quad (4.20)$$

That is, the load current I_C is programmed by the input base voltage V_B, as well as the emitter resistor R_E. Importantly, the question of the load resistance never came into the analysis, so the current is independent of the load resistance.

4.7.1 Compliance

Well, that is, within limits. What are the limits? That is, what is the compliance of the current source? Specifically, the compliance refers to the range of output voltages for which the transistor is properly regulating the current—the output voltage here meaning the collector voltage V_C, which the transistor “presents” to the load.

For proper transistor operation, we need $V_B > V_E$ to switch the collector current, and we also need the collector $V_C \geq V_E + 0.2 \text{ V}$. On the upper end (i.e., lower-current end), we can have V_C going all the way up to $+V_{CC}$, assuming this doesn’t exceed the breakdown voltage of the transistor. So, for a given input voltage V_B, the range of output voltages V_C is from $V_B + 0.2 \text{ V} = (V_B - 0.6 \text{ V}) + 0.2 \text{ V} = V_B - 0.4 \text{ V}$, on up to $+V_{CC}$. This corresponds to a range of current from 0 on up to $(V_{CC} - V_B + 0.4 \text{ V})/R_{load}$, in terms of the load resistance.

4.7.2 Bias Network

Of course, to make the current source work, we need to set the base voltage V_B. How do we do this if we only have ground and the power-supply voltage? The answer, of course, is a voltage divider, as in the circuit below.
Chapter 4. Bipolar Junction Transistors

The voltage divider here could even be a potentiometer (variable resistor), so we can fine-tune the regulated current (our treatment is only approximate, for example, because we are using the approximate V_{BE} drop of 0.6V). The voltage divider gives an unloaded voltage of

$$V_b \approx \frac{R_2}{R_1 + R_2} V_{CC},$$ \hspace{1cm} (4.21)

but we are “loading” the divider with the transistor, so we have to be careful. Remember that the Thévenin equivalent circuit for the voltage divider (Section 1.4.1) is as follows:

$$V_{Th} = \frac{R_2}{R_1 + R_2} V_{CC} \quad R_{Th} = R_1 \parallel R_2 \quad V_n$$

In our discussion of the emitter follower, we saw that the input impedance of the transistor is about βR_E. That is, as “seen” from the base-side of the transistor, the equivalent input circuit is

$$V_{Th} = \frac{R_2}{R_1 + R_2} V_{CC} \quad R_{Th} = R_1 \parallel R_2 \quad V_n \quad \beta R_E$$

Here, we have the input voltage divider, still connected to the transistor base, but with the transistor replaced by its effective input impedance. Thus, V_b is determined by another voltage divider, but V_b is essentially the unloaded value above (i.e., V_{Th}) under the condition

$$R_{Th} = R_1 \parallel R_2 \ll \beta R_E.$$ \hspace{1cm} (4.22)

This condition ensures that the voltage divider is “stiff”—that is, it acts like an ideal voltage source. If this condition is not fulfilled, the divider’s voltage “sags” under the load of R_E via the transistor (i.e., the input impedance of the transistor).

Note that in designing this circuit, you might think that we can just calculate the effect of R_E on V_b, and so we can just tweak the ratio of R_1 to R_2 to compensate. However, the resulting voltage depends on β, which can vary from device to device, or with temperature, or with collector current, etc. That is, in this circuit design (and other circuit designs), it’s important to be in the regime where we can neglect the effect of R_E on V_b—that is, in the regime where β is large, but the particular value of β is not critical.
One other solution to the problem of a sagging voltage divider is to use the Zener-diode voltage regulator (Section 3.5) to set V_B.

In this case, we can get a fairly coarse choice of V_B by choosing the Zener diode, and fine-tune the current by setting R_E.

4.8 Common-Emitter Amplifier

And now for our first voltage amplifier that has gain—the output can be larger than the input. The basic circuit is simple: just take a transistor current source, and use a collector resistance R_C as the load. Heuristically, the input voltage programs a collector current I_C, and R_C acts to convert the current back into a voltage, which serves as the output.

This amplifier only works as advertised on ac signals, so let’s consider small ac variations $v(t)$ and $i(t)$ with respect to dc biases V_0 and I_0, as before:

$$V(t) = V_0 + v(t), \quad I(t) = I_0 + i(t). \quad (4.23)$$

The current-source result (4.20), dropping dc biases, becomes

$$i_C = \frac{v_B}{R_E}. \quad (4.24)$$

The voltage drop across R_C is

$$V_{CC} - V_C = I_C R_C, \quad (4.25)$$
which, in terms of ac quantities, is
\[v_C = -i_C R_C. \]
(4.26)

Combining this with Eq. (4.24),
\[v_C = -\frac{R_C}{R_E} v_B. \]
(4.27)

Identifying these voltages with the input and output voltages,
\[v_{out} = -\frac{R_C}{R_E} v_{in}. \]
(4.28)

Defining the gain of the amplifier by
\[G := \frac{v_{out}}{v_{in}}, \]
(4.29)

the common-emitter gain is
\[G = -\frac{R_C}{R_E}. \]
(4.30)

Then we see that the gain is negative, meaning the input ac signal is inverted at the output, and the ratio of collector and emitter resistors controls the gain.

For the sample-circuit numbers, we have \(G = -10. \)

4.9 Bias Network (AC Coupling)

As in the current source, we need an input network to set the dc bias. A nonzero bias is critical for the amplification of the ac signal: the B–E junction can only conduct in the forward direction, and so the input signal can’t cross through zero and still be amplified without a lot of distortion.

Here, the voltage divider sets the bias voltage, and the input capacitor only passes the ac part of the input signal.

Let’s go through the different parts of the circuit, and work out all the relevant parameters. As a concrete example, we will use the parameters:

\[V_{cc} = 15 \text{ V}, \]
\[R_1 = 56 \text{ k}\Omega, \]
\[R_2 = 5.6 \text{ k}\Omega, \]
\[C = 0.1 \mu\text{F}, \]
\[R_E = 330 \text{ \Omega}, \]
\[R_C = 3.3 \text{ k}\Omega. \]
(4.31)
1. **AC input impedance.** The input circuit is a high-pass filter, with capacitance C. The Thévenin resistance is the parallel resistance of R_1 and R_2, but we must also include the input impedance βR_E of the amplifier as an additional parallel resistance. Thus, at high frequencies when the capacitor acts as a short-circuit, the input impedance of the circuit is the Thévenin resistance, or $R_1 \parallel R_2 \parallel \beta R_E$.

For this circuit, $R_1 \parallel R_2 = 5.1 \, \text{k}\Omega$. Also, $\beta R_E \approx 100 \, \text{k}\Omega$, which is much larger than $R_1 \parallel R_2$, so $R_1 \parallel R_2 \parallel \beta R_E \approx R_1 \parallel R_2 = 5.1 \, \text{k}\Omega$.

2. **High-pass input.** The corner frequency of the input network is $f_{3\text{dB}} = \frac{1}{2\pi (R_1 \parallel R_2 \parallel \beta R_E)C}$. (4.32) (input corner frequency)

For the circuit here, $f_{3\text{dB}} = 310 \, \text{Hz}$.

3. **Loading condition.** It is good practice for the input impedance of the transistor to have negligible effect. That is, we should have $\beta R_E \gg R_1 \parallel R_2$, (4.33) in which case the input impedance and corner frequency of the input network do not depend on β (and thus on temperature, etc.).

For the sample numbers here, we have already seen that we satisfy this condition.

4. **Gain.** From Eq. (4.30), the gain of the amplifier is

$$G = -\frac{R_C}{R_E}.$$ (4.34)

5. **Output impedance.** Because the transistor acts like a current source (with I insensitive to V), the transistor effectively presents a very large impedance at the output—a large change in voltage causes little change in the current. Thus the impedance at the output is the Thévenin resistance at that point, or the parallel impedance of the the collector with R_C. Thus, we can take the output impedance of the amplifier to be approximately R_C.

In this example, the output impedance of the amplifier is $3.3 \, \text{k}\Omega$.

6. **Bias points.** The bias at the input is just the voltage-divider voltage, including any correction from βR_E, which we usually want to ignore. In the circuit here, the $15 \, \text{V}$ supply is divided down to $1.36 \, \text{V}$.

Why does this make sense? It’s important to note that the bias at the input isn’t critical in the sense of needing to be near the middle of the supply range. If we are doing a lot of amplification and want to avoid clipping, though, the output should be close to the center of the supply. Let’s see if this is the case. The emitter voltage is $V_E = V_B - 0.6 \, \text{V} = 0.76 \, \text{V}$. This programs a collector current $I_C \approx (V_B - 0.6 \, \text{V})/R_E = 2.3 \, \text{mA}$, from Eq. (4.20). Then the voltage drop across R_E is $7.6 \, \text{V}$ which is about half of V_{CC}. Notice how the matching ratios of R_1 to R_2 and R_C to R_E lead to a sensible bias voltage here, but because the (fixed) voltage V_{BE} enters here, this rule does not always apply.

4.10 Transistor Differential Amplifier

Now we come to a more sophisticated transistor amplifier, the **transistor differential amplifier.** Schematically, a differential amplifier has the following form:

$$V_{in+} + V_{out} = A(V_{in+} - V_{in-})$$
That is, the output is the difference of the inputs (the signs at the inputs tell you which is subtracted from which), and multiplied by the voltage gain factor A.

Why is a differential amplifier useful? For example:

1. In the transmission of signals, differential amplifiers give you noise immunity— if you transmit a signal on two lines (signal and ground), the same noise appears on each line, and gets cancelled out by a differential amplifier on the receiving end.

2. Differential amplifiers offer a straightforward way to implement negative feedback, which is a nice way to achieve close-to-ideal behavior in nearly every respect. We will go over this in much more detail when we get to op-amps.

The simplest realization of a differential amplifier uses two transistors. To understand this, first recall the common-emitter amplifier.

\[
 v_{\text{out}} = -\frac{R_C}{R_E} v_{\text{in}}. \tag{4.35}
\]

In this amplifier, the result for the ac signal was

The differential amplifier is basically a “stack” of two common-emitter amps, sharing a common resistance R_{EE} at the negative end.
From the layout of the schematic, you can see why this circuit is also called a **long-tailed pair** (the “long” here refers to the magnitude of \(R_{EE} \), which as we will see is typically large compared to \(R_E \)). Note also that the emitter-end of the circuit is powered by a negative supply, so we can have positive or negative outputs.

To analyze this circuit, we will again concentrate on the ac components of the inputs, \(v_1 \) and \(v_2 \). Now let’s think of \(v_1 \) and \(v_2 \) as being deviations from the mean voltage \(\bar{v} \):

\[
v_1 = \bar{v} + \frac{\Delta v}{2}, \quad v_2 = \bar{v} - \frac{\Delta v}{2}.
\]

Here, \(\bar{v} \) is the **common-mode signal**, \(\bar{v} := \frac{v_1 + v_2}{2} \), and \(\Delta v \) is the **differential signal**, \(\Delta v := v_1 - v_2 \).

Ideally, a differential amplifier responds *only* to the differential signal, and is insensitive to the common-mode signal.

4.10.1 Differential-Only Input

We will show that the circuit responds linearly to the inputs, so we can treat the differential and common-mode signals *separately*, just add them together to handle an *arbitrary* input signal. So first, let’s concentrate on only the differential signal. That is, setting \(\bar{v} = 0 \), we have

\[
v_1 = \frac{\Delta v}{2}, \quad v_2 = -\frac{\Delta v}{2}.
\]

Then, just as in the emitter follower,

\[
\bar{v}_E = v_{b_1} = v_1,
\]

and similarly

\[
\bar{v}_E = v_{b_2} = v_2.
\]

At point \(A \) in the circuit, ignoring dc offsets, we have a 50% voltage divider between \(\bar{v}_{E_1} \) and \(\bar{v}_{E_2} \), so the voltage is the average of these:

\[
v_A = \frac{\bar{v}_{E_1} + \bar{v}_{E_2}}{2} = \frac{v_1 + v_2}{2} = 0.
\]

We can interpret this as follows: The point \(A \) acts like the “ground” point for the two common-emitter amplifiers in this circuit. Since this point is stable with respect to differential inputs, the common-emitter results carry through here, and in particular for the right-hand common-emitter amp,

\[
v_{out} = -\frac{R_C}{R_E} v_2,
\]

or in terms of the differential signal,

\[
v_{out} = \frac{R_C}{2R_E} \Delta v.
\]

Note that the minus sign disappeared here, which is why it is sensible to take the output from the right-hand transistor. Thus, we have

\[
G_{\text{diff}} := -\frac{R_C}{2R_E}
\]

as the **differential gain factor** for the amplifier.
4.10.2 Common-Mode-Only Input

Now we can focus on just the common-mode signal. That is, we take $\Delta v = 0$, so that

$$v_1 = v_2 = \bar{v}. \quad (4.46)$$

Then applying Kirchoff’s law to the currents at point A,

$$i_{EE} = i_{E1} + i_{E2} = 2i_E, \quad (4.47)$$

since the two emitter currents are the same. Here, i_{E1} and i_{E2} are the (ac components of the) currents out each emitter (both equal to i_E), and i_{EE} is the current through R_{EE}. Then applying Ohm’s law at point A,

$$v_A = i_{EE}R_{EE} = 2i_ER_{EE}, \quad (4.48)$$

and now Ohm’s law across either emitter resistor gives

$$i_E = \frac{v_E - v_A}{R_E} = \frac{v_{in} - 2i_ER_{EE}}{R_E}, \quad (4.49)$$

after eliminating v_A. Solving for i_E,

$$i_E = \frac{v_{in}}{R_E + 2R_{EE}}. \quad (4.50)$$

Then the output is, just as we had in the common-emitter amplifier,

$$v_{out} = -i_C R_C \approx -i_E R_C, \quad (4.51)$$

if we assume β large, and then using Eq. (4.50),

$$v_{out} = -\left(\frac{R_C}{R_E + 2R_{EE}}\right)v_{in}, \quad (4.52)$$

such that we can define

$$G_{CM} := -\frac{R_C}{R_E + 2R_{EE}} \quad (4.53)$$

as the common-mode gain factor.

4.10.3 General Input and Common-Mode Rejection

Since the circuit responds linearly to the inputs, we can take a general pair of inputs v_1 and v_2, decompose them into differential and common-mode components via Eqs. (4.37) and (4.38), and then the output is

$$v_{out} = G_{diff}\Delta v + G_{CM}\bar{v}. \quad (4.54)$$

Again, for a “good” differential amplifier, G_{CM} should be zero, or at least small compared to G_{diff}.

One way to quantify the “goodness” of the differential amplifier is the common-mode rejection ratio (CMRR), which we define as

$$\text{CMRR} := \frac{|G_{diff}|}{|G_{CM}|} = \frac{R_E + 2R_{EE}}{2R_E}. \quad (4.55)$$

Thus, typical differential-amplifier designs will be such that $R_{EE} \gg R_E$, in which case the CMRR reduces to the simple ratio

$$\text{CMRR} \approx \frac{R_{EE}}{R_E}. \quad (4.56)$$

Again, an ideal differential amplifier has a large CMRR. Typically the CMRR is large enough that it is usually measured in dB.
4.10.4 Improving the Differential Amplifier

One problem with the differential amplifier is that it is usually desirable to have a large differential gain G_{diff}, which means R_C should be large. However, R_C is also the output impedance, and we usually don’t want a large output impedance (we want the output to act more like an ideal voltage source). A simple solution to this is to buffer the output using an emitter follower, which will reduce the effective output impedance by a factor of β.

Another observation is that R_{EE} should be large for a high CMRR. An improvement is to replace R_{EE} with a transistor current source. This regulates a constant i_{EE}, which regulates a constant i_E in the common-mode analysis. Since i_E is acting as a constant, this implies a very large effective R_{EE} in Eq. (4.50).

Finally, note that we can obtain a good CMRR by having $R_E \ll R_{\text{EE}}$. In fact, why can’t we just set $R_E = 0$? We can replace the resistors R_E by shorts, but still these resistances will not be zero. In this case, the resistances will be the intrinsic resistance r_e of the transistors, which we will return to below.

4.11 Ebers–Moll Equation

So far, we have been understanding transistor circuits using the crude current-control model, centered on the equation [Eq. (4.1)]

$$I_C = \beta I_B,$$

(4.57)

with β roughly constant. The crudeness is, of course, that β is not constant. Usually we try to design in such a way that this doesn’t matter, but it is still useful to develop a better model of the transistor.

Recall the diode law (3.1), relating the diode current and voltage:

$$I = I_S \left(e^{V/nV_T} - 1 \right).$$

(4.58)

Here, I_S is the saturation current (reverse leakage current), V_T is the thermal voltage

$$V_T := k_B T,$$

(4.59)

$k_B = 1.381 \times 10^{-23}$ J/K is the Boltzmann constant, and $e = 1.602 \times 10^{-19}$ C is the fundamental charge.

The base–emitter junction of the transistor works much like a diode, and a similar law applies to transistor operation, the Ebers–Moll equation:

$$I_C = I_{CS} \left(e^{V_{\text{BE}}/V_T} - 1 \right).$$

(Ebers–Moll equation)

(4.60)

This relates the collector current I_C to the base–emitter voltage $V_{\text{BE}} = V_B - V_E$, via a saturation current I_{CS}. Unlike the current-control view of the β model of the transistor, the Ebers–Moll equation gives a voltage-control view of transistor operation. The control of I_C via I_B is only indirect, since I_B is controlled by V_{BE} via diode-like conduction. Thus, the transistor is a transconductance device (meaning a device that converts voltage to current). The Ebers–Moll model turns out to be accurate over a wide range of currents, typically from nA–mA.

4.11.1 Magnitudes

To compare with what we know before, for a typical circuit analysis we assumed $V_{\text{BE}} \approx 0.6$ V, which is much bigger than the thermal voltage V_T (25.69 mV at 25°C). Thus the exponential in the Ebers–Moll equation is large compared to the 1, and so Eq. (4.60) becomes

$$I_C \approx I_{CS} e^{V_{\text{BE}}/nV_T}$$

(4.61)

and

$$I_C \gg I_{CS},$$

(4.62)
This also means that, as in the diode, that V_{BE} is relatively insensitive to variations in the collector current, if we think about the relation in a “backwards” way. That is, if I_C changes by a factor of 10, and V_{BE} changes by ΔV_{BE}, then

$$10 \approx e^{\Delta V_{BE}/V_T},$$

so that the voltage change is

$$\Delta V_{BE} \approx V_T \log 10,$$

which is about 59 mV at 25°C.

4.11.2 Relation to β

Then how do we recover the current-control relation (4.57)? If we think of the base-emitter junction as a diode, then we simply apply the diode law (4.58) to obtain

$$I_B = I_S \left(e^{V_{BE}/V_T} - 1\right),$$

where I_S is the saturation current of the base-emitter junction, and we have set $n \approx 1$. Then solving this for V_{BE},

$$V_{BE} = V_T \log \left(\frac{I_B}{I_S} + 1\right),$$

and putting this into the Ebers–Moll equation, we find

$$I_C = \left(\frac{I_{CS}}{I_S}\right) I_B.$$

This has the form of the transistor β relation (4.57), with a β of I_S/I_{CS}. Note, however, that β is temperature dependent and somewhat dependent on current, which is not reflected in this simple derivation (for example, the proportionality is not exact if we do not set $n = 1$ in the diode law).

4.11.3 Intrinsic Emitter Resistance

The Ebers–Moll equation is also useful in establishing an intrinsic emitter resistance of the transistor. For ac signals, the intrinsic resistance in the emitter is defined by

$$v_{BE} = i_E r_e.$$

That is, an ac emitter current i_E modulates the base-emitter voltage v_{BE} by an amount controlled by r_e. Given that these ac signals are small, this relation is given by the derivative of the v_{BE}–i_E relation, or the Ebers–Moll equation. We can calculate this via

$$\frac{1}{r_e} = \frac{i_E}{v_{BE}} \approx \frac{i_C}{V_T},$$

since we assume β is large, as usual. Then at some bias collector current I_C,

$$\frac{1}{r_e} \approx \frac{dI_C}{dV_{BE}}.$$

Differentiating Eq. (4.61), this becomes

$$\frac{1}{r_e} \approx \frac{I_C}{V_T},$$

or

$$r_e \approx \frac{V_T}{I_C} \approx \frac{25.69 \text{ mV}}{I_C} \text{ at } 20^\circ\text{C}.$$

This defines the intrinsic resistance of the transistor, which depends on both current and temperature.
4.11.4 Current Mirror

A good example of a simple transistor circuit that can best be understood via the Ebers–Moll equation is the current mirror. Essentially, I_p in the circuit below is the “program current,” and the mirror “copies” the current through the load, independent of the load impedance (within limits, of course). For example, the program current can be set with a resistor connecting the programming terminal (collector of Q_1) to ground. This circuit is shown using PNP transistors, but can also work with NPN transistors if the voltages are reversed.

\[I_C = I_p \]

\[+V_{cc} \]

\[Q_1 \]

\[I_p \]

\[+V_{cc} \]

\[Q_2 \]

\[I_{load} = I_p \]

How does this work? $I_C \approx I_p$ for Q_1 if we assume a large value of β. Then this sets V_{BE} via the Ebers–Moll equation, and thus V_B for Q_1. The transistor bases are connected, so this also sets V_B for Q_2, and thus V_{BE} for Q_2, since Q_2’s emitter is connected to the same supply as Q_1’s. Then, since Q_2 satisfies the same Ebers–Moll equation as Q_1, Q_2’s collector current must be the same as Q_1’s. Note that we didn’t need the exact form of the Ebers–Moll equation, just that it relates I_C to V_{BE}, and that it is the same for both transistors. This is only the case if the two transistors are identical and at the same temperature; if these conditions are not true, the analysis is more complicated. In practice, to make sure the properties and temperature match, the current mirror could be implemented using a matched transistor pair in a monolithic package.

This is a circuit that is used, for example, as a common building block in integrated circuits. For example, the OPA622 op-amp uses an external resistor connected to internal current mirrors to set the quiescent current (current when the circuit is idling)—this allows the user to set the trade off between power efficiency and high speed.\(^2\)

4.11.5 Other Refinements to the Transistor Model

We will close out our discussion of BJTs by noting some other complications that are useful to keep in mind.

4.11.5.1 Temperature Dependence of the Base–Emitter Voltage

First, remember that due to the diode-like nature of the BJT, the “input voltage” V_{BE} depends on temperature. We can get idea of the strength of this dependence by getting the temperature slope from the diode law. For example, differentiating the diode law in the form (4.66) gives

\[\frac{dV_{BE}}{dT} = \frac{V_T}{T} \log \left(\frac{I_B}{I_S} + 1 \right) = \frac{V_{BE}}{T}. \] \hfill (4.73)

Assuming $V_{BE} \approx 0.6$ V, this is about 2 mV/°C at 25°C. However, this is wrong! It turns out that I_S increases exponentially with temperature, which tends to counteract the temperature dependence in V_T. The net effect is that

\[\frac{dV_{BE}}{dT} \approx -2.1 \text{ mV/°C}, \] \hfill (4.74)

\(^2\)See http://www.ti.com/lit/ds/symlink/opa622.pdf. This is a good exercise: find the current mirrors in the schematic diagram, Fig. 2 p. 10.
or different from the naïve calculation by about a minus sign, and the proportionality to T^{-1} still approximately holds.3

4.11.5.2 Early Effect

The Early effect says that V_{BE} also depends on V_{CE}. The dependence is weak, and an increase in V_{CE} decreases V_{BE} slightly.4

$$\Delta V_{BE} \approx -10^{-4} \Delta V_{CE}. \quad (4.75)$$

4.11.5.3 Miller Effect

The Miller effect says that the collector–base junction, which normally acts like a reverse-biased diode, acts as if it has a small parallel capacitance, on the order of a few pF. The main problem is that if a transistor circuit has voltage gain G, then this Miller capacitance C_{CB} gets “transferred” to the input as an effective capacitance of $(1 + B)C_{CB}$. With any input impedance, this forms a low-pass filter, so for fast circuits, either the input impedance needs to be kept small, or the gain G must be small.

4.11.5.4 Variation of β

Finally, we have already noted that β is not really a constant, but this is worth reiterating. It varies between transistors and with temperature. The only thing to rely on should be that β is large (100 or more), not that it has any particular value. Note that in terms of gains, β drops out of all the circuits we analyzed; it only appears in the impedance expressions, where its exact value is not critical.

4.12 Circuit Practice

4.12.1 Transistor Switching an Inductive Load

Consider the circuit below, where an NPN transistor switches an inductive load (electromagnet, motor, etc.).

![Circuit Diagram]

Explain what you need to do to switch the inductive load on and off. Also, why the diode, which is necessary for large inductances, to protect the transistor when switching off the current?

Solution. Without any connection to the transistor base, the inductor is switched off. To run current through the load (say a current I, limited by the resistive part of the load impedance), we need to inject about 1/100 ($1/\beta$) of I into the base, e.g., using a voltage and a resistor as a voltage-to-current convertor.

4Horowitz and Hill, *op. cit.*, p. 75.

5Horowitz and Hill, *op. cit.*, p. 103.
The problem with this setup is that when switching off the current, the inductor will develop a large EMF to try to sustain the current. This will pull the collector voltage far above \(+V_{\text{cc}}\) if the inductance is large and the switching is rapid [remember the EMF is \(L(dI/dt)\)]. This can exceed the transistor breakdown voltage, destroying the transistor. When \(V_C > V_{\text{cc}}\), the diode shorts the collector to \(V_{\text{cc}}\), clamping the voltage at \(V_{\text{cc}}\) and protecting the transistor.

4.12.2 Joule Thief

Let’s take a break from quantitative analysis of transistor circuits, and look at a fun and elegant circuit. The circuit below is called the **joule thief**. To understand the name, consider that the circuit is powered by a 1.5 V battery, but as we discussed before in Section 4.5, turning on a blue or white LED takes about 3.3 V. The “thievery” comes from noting that this circuit works even with a sagging battery with an even lower voltage—hence, we can get steal every last joule from the battery (here, for the purposes of lighting up the LED).

![Joule Thief Circuit Diagram]

Your exercise here is to trace through the circuit and explain how it works. Just treat the transistor as a switch; no need to do any calculations. Also, as a hint, note that inductors are fairly rare in circuits; usually they show up either as filters (as in the outputs of switching power supplies for computers), or—as is the case here—they are around to give an inductive kick when they are interrupted (like the spark-plug coil in gasoline-powered car engines).

Solution. Suppose we start with the transistor off. Current starts flowing from the battery, but it can’t go into the collector. The only path it has is into the base; the resistor is there to make sure we don’t...
overdo the current. This base current turns on the transistor, so a much larger current can start to flow into the collector. As the current flows through the secondary of the transformer to the collector, the opposite current is induced in the primary (note the primary and secondary are wound/oriented oppositely). This induced current opposes and thus interrupts the base current, switching off the transistor. This interrupts the collector current, interrupting the relatively large current in the transformer secondary. This leads to an inductive kick, and the collector voltage builds up potentially far above the battery voltage (recall the same thing happens for a transistor switching off an inductive load, as in Section 4.12.1). The collector thus builds up to a sufficiently high voltage that the LED turns on, dumping the inductive kick. Then we are back to the initial state, and the process repeats.

4.12.3 Solid-State Tesla Coil

Here is another good circuit to practice qualitative reading of transistor operation.

The goal of this circuit is to develop high voltages (of order 25 kV) by using a flyback transformer from a television (the old, cathode-ray-type, which needs large voltages to accelerate the electron beam). The left-hand side of the circuit is basically a dc power supply to drive the right-hand side. The neon lamp (a tiny, neon-filled glass discharge tube) is a handy way of indicating 120-V power; the lamp needs about 90 V to “fire,” and then once the discharge starts, little current is needed to sustain it, so the voltage is regulated by the 100-kΩ resistor.

The flyback transformer is driven through a center-tapped primary coil by an alternating pair of power transistors, which are driven by a center-tapped “feedback” coil. Trace through the circuit to understand how the transistor pair switches between the “on–off” and “off–on” pair states. To get started, assume that both transistors are initially off, and pick an arbitrary path for the current from the voltage divider driving the feedback coil.

4.12.4 Eric Clapton Signature Stratocaster Preampifier

Look at the linked schematic diagram for the Eric Clapton Signature Stratocaster from Fender Musical Instruments Corp. The guitar emulates Clapton’s beloved old “Blackie” guitar, but the preamp has an

7http://www.blueguitar.org/new/schem/_gtr/ec_schem_fact.jpg
unusual feature of enabling a boost in the midrange audio band. This allows electronic control of the guitar’s tone from the traditional “Strat” sound to something more akin to a Gibson Les Paul (which featured “humbucking” pickups, which have more midrange gain).

This schematic is somewhat awkward to read, but you can still look through it and try to spot a few elements. In particular, look at transistors Q1–Q4 and identify what amplifiers each one makes up. Also try to identify the bias network in each case.
4.13 Exercises

Problem 4.1

In the circuit below, for what range of resistances R_C will the transistor be saturated?

![Transistor Circuit](attachment:image.png)

Assume $\beta = 100$.

Problem 4.2

Consider the following transistor circuit. Consider V_{cc}, R_B, and R_C to be fixed. For what range of input voltage V_{in} is the transistor saturated?

![Transistor Circuit](attachment:image.png)

Problem 4.3

Consider the transistor circuit below. Assume the input is biased such that the transistor works normally, and ignore any internal resistances in the transistor. For the calculations in this problem, you may assume $\beta \gg 1$.
(a) Consider small voltage changes v_{in} and v_{out} at the input and output (i.e., ignore bias voltages). Compute the voltage gain $G = v_{out}/v_{in}$.

(b) Compute the input impedance.

(c) Compute the output impedance.

Problem 4.4

Consider the common-emitter amplifier (in this case, a “grounded-emitter amplifier,” since $R_E = 0$) shown below.

(a) What is the minimum value of V_{in} that saturates the transistor? Assume $\beta = 100$.

(b) Suppose you set V_{in} to 1 V. What is the voltage gain of the amplifier? (Recall that in this configuration, the gain is limited by the intrinsic emitter resistance; assume the transistor is at 20°C.)

Note that, in practice, this circuit has some problems. The emitter resistance varies with I_C, and thus with V_{in}. That means that both the gain and the input impedance of the transistor depend on V_{in}, leading to distortion in the output signal. We will improve on this basic circuit in the next problem.

Problem 4.5

Consider the common-emitter amplifier below. This is a fairly involved problem, but the idea is to give you a template for how to design a real transistor amplifier.
The design criteria for this amplifier are: a large gain over a usable bandwidth of 100 Hz–20 kHz, an input impedance of 10 kΩ, a quiescent current (dc current) of 1 mA (dominated by the collector current), and the circuit will drive a 10 kΩ load (the last spec is typical of line-level audio circuits). The dynamic range of the output should also be reasonably close to the maximum possible, so we will fix the collector voltage at \(+V_{CC}/2 \).

(a) Now we must set the gain of the circuit, and so we need to explain the function of \(C_E \). The idea is that at frequencies above 20 Hz, the capacitor bypasses the resistor, so that over the amplifier bandwidth the intrinsic emitter resistance sets the voltage gain, not \(R_E \). What collector current do we need? Write an expression in terms of \(R_C \), which is yet to be determined.

(b) Use your result from (a) to show that the (ac) voltage gain in this circuit can be written

\[
G = -\frac{V_{RC}}{V_T},
\]

where \(V_{RC} \) is the voltage drop across \(R_C \).

(c) Using the specified collector voltage, what is the gain at 20°C?

(d) What are \(R_C \), \(r_e \), and \(I_B \)? Use \(\beta (h_{FE}) \) from the data sheet.\(^9\)

(e) For the emitter resistor, a good choice for \(R_E \) is often about \(0.1 \cdot R_C \). What is this resistance, and what is \(V_E \)? The reason for this choice is as follows. Recall that \(V_{BE} \) varies with slightly with temperature. If we fix \(V_B \), then this variation leads to a temperature dependence of \(V_E \) and thus the bias current. To minimize this effect, \(V_E \) should be much larger than the variation in \(V_{BE} \). Verify explicitly that this is the case for this circuit, over, say, variations of 10°C (i.e., estimate the effect on the quiescent current for this temperature change).

(f) What is \(V_B \)? (Use the data sheet for any values you need, don’t assume standard values.) Now choose \(R_1 \) and \(R_2 \), accounting for the design specs and not forgetting to account for the effect of \(R_E \) on the input impedance. A computer here is probably helpful in solving the resulting equations; ask for help with this if you need it.

(g) Set \(C_E \) by guaranteeing that its impedance is negligible compared to \(r_e \) (not \(R_E \)) over the amplifier’s ac bandwidth.

(h) Choose C_{in} and C_{out}.

(i) As a sanity check, note that transistors have a parameter h_{oc}, called the \textbf{output admittance}, defined by

$$h_{\text{oc}} := \left. \frac{I_C}{V_C} \right|_{I_B=0}. \quad (4.77)$$

Note that this has units of conductance, and in fact $1/h_{\text{oc}}$ acts as an effective collector resistance that appears in parallel with R_C. Verify from the data sheet that we are justified in ignoring this.

(j) Give an order-of-magnitude estimate for the life of a 9 V battery powering this circuit. (Look at some battery data sheets to find some useful information; cite any sources you use.)

\textbf{Problem 4.6}

Consider the current mirror below.

\begin{center}
\begin{circuitikz}
\draw (0,0) node[transistor, i=I_p, out=I_{\text{load}}] (Q1) {} -- (1,0) node[transistor, i=I_{\text{load}}, out=load] (Q2) {};
\draw (Q1.10) -- (Q1.20) -- (Q2.220) -- (Q2.320) -- (Q1.320) -- (Q1.10);
\draw (+V_{\text{CC}}) to (Q1.10); \draw (Q2.10) to (+V_{\text{CC}});
\end{circuitikz}
\end{center}

Suppose that Q1 is at temperature T_1 and Q2 is at temperature T_2 (in class we assumed these were the same). Derive an expression for the current I_{load} in terms of the program current I_p and the temperatures. Assume that the transistors are otherwise identical.

\textbf{Problem 4.7}

Consider the circuit below.

\begin{center}
\begin{circuitikz}
\draw (0,0) node[transistor, i=$\beta=100$, out=V_{out}] (Q) {} -- (1,0) node[ground] {};
\draw (Q.10) -- (Q.20) -- (0,-1) node[ground] {} -- (0,-2.5) -- (1,-2.5) -- (1,-1) -- (Q.320) -- (Q.120) -- (0,0);
\draw (0,-1.5) node[capacitor, v=$0.1 \mu\text{F}$, i=V_{in}] {} -- (0,-2.5);
\draw (0,-2) node[ground] {} -- (0,-3) -- (0,-3.5) -- (1,-3.5) -- (1,-3) -- (1,-2) -- (1,-1.5);
\draw (0,-2) node[resistor, v=10 k\Omega] {} -- (0,-2.5);
\draw (1,-3) node[ground] {} -- (1,-3.5) node[ground] {} -- (1,-4) -- (0,-4) -- (0,-3.5) node[ground] {};
\draw (0,-2) node[resistor, v=100 k\Omega] {} -- (0,-2.5);
\draw (1,-3) node[ground] {} -- (1,-3.5) node[ground] {} -- (1,-4) -- (0,-4) -- (0,-3.5) node[ground] {};
\draw (+15 V) to (Q.10);
\end{circuitikz}
\end{center}
(a) What is the input impedance at high frequencies? Don’t bother computing the actual value (unless you really want to), but give enough of an expression to make it clear how you *would* do this if you had a calculator.

(b) What is the dc bias level of V_{out}? Again, you don’t need to get the numerical result, just give a chain of relations that shows how you could get the correct numerical answer. Nevertheless, you may want to give a *rough* estimate of the answer as a sanity check and to help in the next part of the problem.

(c) How does the intrinsic emitter resistance enter into the analysis of this circuit? For the specific component values here, how much does it affect the quantities you calculated in (a) and (b)?
Chapter 5

Field-Effect Transistors

Field-effect transistors are three-terminal devices, like bipolar junction transistors. Although they operate somewhat differently from BJTs, they can also be used as amplifiers and switches. By considering how they work in basic circuits, we'll see some of the advantages and disadvantages of FETs relative to BJTs.

5.1 JFET (Depletion-Mode FET)

A junction FET (JFET) is basically a p-n junction with a special geometry and three terminals. JFETs always work as depletion-mode devices, which refers to the depletion zone at the junction, which is responsible for the switching action of the JFET. The basic scheme for an n-channel JFET is shown below (the p-channel counterpart is basically the same, under the exchange of p- and n-type semiconductors).

As in the semiconductor diode, a depletion zone forms at the p-n junction. In normal operation, the voltage at the gate terminal is kept below that of the drain and source, so the junction is reverse-biased. Only a small leakage current flows via the gate terminal. However, in the configuration shown, there is a low-impedance path between the drain and source terminals, through the n-type region (hence, the “n-channel”). However, when the gate is brought to a negative voltage with respect to drain and source, the depletion zone expands as in the reverse-biased diode. At a sufficiently negative voltage, the depletion zone “pinches off” the n-channel, preventing current flow from drain to source.
For intermediate gate voltages, the gate voltage acts as a control that modulates the resistance of the drain-source path. This acts something like modulating the flow of water in a garden hose by changing the clamping force of a pair of pliers on the hose.

Note that the convention in the n-channel JFET is that current flows from drain to source (i.e., the n-type carriers are flowing from the source and out the drain). The current flows from source to drain in the p-channel JFET. These two terminals appear to be interchangeable according to the above diagrams, and for some devices they are so in practice. However, due to geometric differences, the drain and source are not always equivalent. For example, the drain and source often have different capacitances, so reversing them can affect the speed of a JFET amplifier.

The symbols for n-channel and p-channel JFETS is shown below. The difference between the two transistors is only the direction of the gate arrow, which indicates the orientation of the p-n junction (like the arrow in the diode symbol).

The asymmetric placement of the gate differentiates the drain and source.

To summarize the operation of the n-channel JFET:

- If $V_{GS} = 0$, then current can flow through the n channel, typically from drain to source (i.e., $I_{DS} > 0$).
- If $V_{GS} < 0$, the junction is reverse-biased, and the expanding depletion zone restricts current flow.
- There is some threshold voltage V_T: if $V_{GS} < V_T$, then the n-channel is “pinched off,” and no current flows ($I_{DS} = 0$). Typically V_T ranges from -2 to -15 V. Don’t confuse the threshold voltage from the thermal voltage from diode-law and Ebers–Moll fame.
- The forward-biased case $V_{GS} > 0$ doesn’t normally happen. You may as well just use a diode.
- The JFET is thus a transconductance device, where a voltage controls a current (like the BJT, from the standpoint of the Ebers–Moll equation).
5.2 MOSFET (Enhancement-Mode FET)

A second major class of FETs is the metal-oxide-semiconductor FET (MOSFET), also called the insulated-gate FET (IGFET). The names refer to the gate terminal, which is connected to a metal conducting layer, and insulated by an oxide layer from the semiconductor regions of the MOSFET. Some MOSFETs behave as depletion-mode devices, but these are relatively rare. Here we will focus on the much more common case of enhancement-mode MOSFETs. The basic scheme for an n-channel MOSFET is shown below (note that the body is a p-type semiconductor, unlike the n-channel JFET; the operating principle is quite different).

![Diagram of an n-channel MOSFET](image)

The drain and source terminals connect to n-type regions, which are embedded in the p-type substrate or body. In principle MOSFETs have a separate body connection, but these are not always explicitly available (often the body and source terminals are combined into one terminal). The idea here is that if no voltage is applied to the gate, no drain–source current can flow because it will be blocked by one reverse-biased p-n junction. However, when a positive control voltage (with respect to drain and source) the gate’s E-field pulls n-type carriers out of the p-type substrate (the p-type carriers are the majority carrier in the p-type semiconductor, but n-type carriers are also present as the minority carrier). The n-type carriers bunch against the gate insulator form an effective n-channel, or induced n-channel, that bridges the drain and source. The diagram shows the induced n-channel as being somewhat asymmetric, as appropriate if $V_{DS} > 0$.

The symbols for n-channel and p-channel enhancement-mode MOSFETs are shown below. Again, there are extra body connections, but often these are internally shorted to the source.

![Diagram of n-channel and p-channel MOSFET symbols](image)

Also, the three short, vertical lines that represent the three semiconductor regions are sometimes drawn as a single line. Again, the asymmetry of the gate distinguishes drain from source, and the orientation of the arrow distinguishes n- and p-channel types, by indicating the orientation of the p-n body–drain and body–source junctions.

To summarize the operation of the n-channel JFET:
• If \(V_{GS} = 0 \), no current \(I_{DS} \) can flow, because of a reverse-biased junction as in the NPN transistor.

• If \(V_{GS} > 0 \), the gate field induces an n-channel, and current \(I_{DS} \) can flow, typically with \(I_{DS} > 0 \).

• Due to the oxide insulator, there is very little gate-current leakage. However, the insulator layer is easily damaged by static discharges.

• The switching operation is similar to the n-channel JFET, but the threshold voltage \(V_T > 0 \). That is, conduction occurs when \(V_{GS} > V_T \), so the gate voltage must be positive for the MOSFET. Remember the gate voltage is generally negative in the JFET, with conduction turning off for sufficiently negative voltages.

MOSFETs are very common in digital circuits, in the form of complementary MOS (CMOS) circuits, where n- and p-channel MOSFETs are paired together.

5.3 Quantitative FET Behavior

Having established that JFETs and MOSFETs have similar behavior except for the particular value (i.e., sign) of the threshold \(V_T \), we can treat both cases together, so long as we track the control voltage \(V_{GS} \) relative to \(V_T \). For small input signals (small ac signals on a dc bias), the transconductance nature of a FET means we can write

\[
I_{DS} = g_m v_{GS},
\]

(FET transconductance relation)

where \(g_m \) is the \textit{transconductance}. This has dimensions of \(\Omega^{-1} \), which is often written \(\Omega \) and called a \textit{mho} (or \textit{siemens}, abbreviated “S,” if you want to be all SI about it). The transconductance depends, however, on the bias levels \(V_{GS} \) and \(V_{DS} \). This relation is the analogue of \(I_c = \beta I_b \) for BJTs.

The FET current formulas can describe the current-voltage characteristics, like the Ebers–Moll equation for BJTs, but in a piecewise way.

1. **Linear region**: when \(V_{DS} \ll (V_{GS} - V_T) \), we have

\[
I_{DS} = 2k \left[(V_{GS} - V_T)V_{DS} - \frac{V_{DS}^2}{2} \right]
\]

(FET in linear region)

where \(k \) is a conductance parameter, which is device-dependent and scales with temperature as \(T^{-3/2} \). (The threshold voltage \(V_T \) also depends on temperature.) Note that due to the quadratic term in \(V_{DS} \), this relation is not really “linear.” However, this term is negligible if \(V_{DS} \ll (V_{GS} - V_T) \), or if more linear behavior is desirable, there are tricks to compensate for this term. In the really linear case where we can ignore the nonlinear term, we have a resistance

\[
R = \frac{1}{2k(V_{GS} - V_T)^2}.
\]

(FET resistance in linear region)

This says that the FET in this regime is useful as a voltage-controlled resistor, for example to control variable gain or attenuation in a circuit.

2. **Saturation region**: when \(V_{DS} \gg (V_{GS} - V_T) \). In this region, \(I_{DS} \) is independent of \(V_{DS} \), in some sense like the saturated BJT where the transistor no longer directly modulates the collector current. In this region,

\[
I_{DS} = k(V_{GS} - V_T)^2.
\]

(FET in saturation region)

3. **Subthreshold region**: when \(I_{DS} \) is small, because the control voltage is around or below the threshold. In this region,

\[
I_{DS} = k e^{V_{GS} - V_T}.
\]

(FET in subthreshold region)
5.4 Basic FET Circuits

5.4.1 JFET Current Source

A simple JFET circuit is the JFET current source, shown below.

\[I_{\text{load}} = I_{\text{DSS}} + V_{\text{DD}} \]

The idea is to operate the JFET in the saturation region, where \(I_{\text{DS}} \) is independent of \(V_{\text{DS}} \), allowing the JFET to adjust the load voltage to regulate its current. Since the gate and source are shorted (and grounded), \(V_{\text{GS}} = 0 \). Then using Eq. (5.4), we find the constant current

\[I_{\text{DS}} = kV_T^2 = I_{\text{DSS}}, \tag{5.6} \]

where \(I_{\text{DSS}} \) is the maximum JFET current.

The advantage of this circuit, compared to the BJT current source, is its simplicity. The disadvantage is more serious: \(I_{\text{DSS}} \) varies significantly between devices. However, it is possible to get hand-picked FETs with particular values of \(I_{\text{DSS}} \), called current-regulator diodes (something like Zener diodes, but for current instead of voltage).

5.4.2 JFET Source Follower

The next circuit is the JFET analogue of the BJT emitter follower.

\[v_{\text{in}} \rightarrow +V_{\text{DD}} \rightarrow v_{\text{out}} \rightarrow R_s \rightarrow \]

\[+V_{\text{DD}} \]

Ignoring offsets, Ohm’s law for the source resistance gives

\[v_s = i_{\text{DS}} R_s, \tag{5.7} \]

while the transconductance relation (5.1) gives

\[i_{\text{DS}} = g_m v_{GS} = g_m (v_G - v_s). \tag{5.8} \]
The latter equation becomes
\[v_G = \frac{i_{DS}}{g_m} + v_S = \frac{i_{DS}}{g_m} + i_{DS}R_S. \] (5.9)
after solving for \(v_G\) and using Eq. (5.7). Then the ac voltage gain is
\[G := \frac{v_{\text{out}}}{v_{\text{in}}} = \frac{v_G}{v_G} = \frac{i_{DS}R_S}{i_{DS}/g_m + i_{DS}R_S}, \] (5.10)
after using Eqs. (5.7) and (5.9). This simplifies to
\[G = \frac{g_mR_S}{1 + g_mR_S}. \] (5.11)
(voltage gain, JFET source follower)

Note that \(G \approx 1\) (hence, a follower) for large resistance \(R_S \gg 1/g_m\). For a typical signal JFET like the 2N5485, \(g_m \approx 5000 \mu\Omega\), so \(1/g_m \approx 200 \Omega\), so have a larger resistance than the internal FET resistance is not difficult.

This circuit has high input impedance, because the input is essentially a reverse-biased diode. However, the output impedance is basically \(1/g_m\), which could be somewhat large compared to the emitter follower. Another disadvantage of this circuit is the unpredictable dc offset, since \(V_{GS}\) for a certain current is not well-controlled in the fabrication process.

5.4.3 JFET Voltage Amplifier

Next is a JFET voltage amplifier, the FET analogue of the common-emitter amplifier.

Here, \(R_G\) maintains the dc bias of \(V_{GS}\) at ground, but allows ac modulation of the gate via the capacitor \(C\). If \(V_{GS} = 0\), the quiescent current is \(I_{DS} = I_{DSS}\), as in the JFET current source. Then the output is biased at
\[V_{\text{out}} = V_{DD} - I_{DS}R_D. \] (5.12)

This bias level may be adjusted by introducing a source resistor, thus lowering \(V_{GS}\).

For small ac signals,
\[v_{\text{out}} = v_D = -i_{DS}R_D. \] (5.13)

Using also the transconductance relation (5.1),
\[i_{DS} = g_mV_{GS} = g_mv_{\text{in}}, \] (5.14)
we then have
\[v_{\text{out}} = -g_mR_Dv_{\text{in}}, \] (5.15)
which implies a voltage gain

\[G = -g_m R_D. \]

(5.16)

(voltage gain, JFET voltage amplifier)

So for example, if \(R_D = 1 \, \text{k}\Omega \) and for the 2N5485, \(1/g_m = 200 \, \Omega \), then \(G = -5 \), which is not a huge gain. By contrast, in the common-emitter amplifier, using the intrinsic emitter resistance \(r_e = 25 \, \Omega \) at \(I_C = 1 \, \text{mA} \), the gain is about \(8 \times \) larger (because \(r_e \) is eight times smaller than \(1/g_m \)). So the advantage of the JFET is high input impedance (good for input stages of amplifiers, especially op-amps), the advantage of the BJT is better speed (due to lower capacitance) and amplification.

5.4.4 MOSFET Analog Switch

One nice example of a MOSFET application is as an analog switch, which passes or blocks an analog signal based on a control voltage.

![Diagram of MOSFET Analog Switch](image)

Here, the base terminal is tied to ground; the MOSFET acts as a short if \(V_{\text{control}} \) is well above any input, but acts as an open circuit if the gate drops to zero. The output resistor ensures a zero (not floating) output when the MOSFET is off. This circuit can be adapted to positive/negative signals by dropping the base and the “off” voltage to \(-15 \, \text{V}\).

MOSFETs with separate base connections are actually the exception. More common are MOSFETs with the base and source shorted together. The net effect of this connection is similar to connecting a diode from source to drain. The circuit still works with this kind of MOSFET (e.g., 2N7000), if the orientation is correct.

![Diagram of MOSFET Analog Switch with Separate Connectors](image)

However, for a positive/negative signal, two 2N7000’s, back-to-back, are needed for the switch to function properly.
5.5 Exercises

Problem 5.1

Consider an n-channel (enhancement-mode) MOSFET. The standard connections are shown on the left in the diagram below. Recall that if the G–S voltage is zero, the MOSFET is in the “pinched-off” state, so no D–S current flows in either direction.

Many MOSFETs have the body connected internally to the source (often to fit the MOSFET into a cheaper, 3-pin package), as shown to the right in the diagram. In this case, when $V_{GS} = 0$, the MOSFET will block current in one direction only, while conducting freely in the other direction. Which direction is which? Explain why in terms of the underlying n-type and p-type semiconductor regions.

Problem 5.2

In each circuit, does current flow due to the applied EMF? (Ignore leakage currents, e.g., in a reverse-biased diode, and assume the applied EMF is a few volts.) Briefly explain your answer.
Chapter 6

Operational Amplifiers

6.1 Op-Amp Basics

We have already talked a bit about differential amplifiers, when we analyzed the transistor differential amplifier. The differential amplifier is an important building block in its own right, and we will spend a fair amount of time looking at them. In particular, the operational amplifier (op-amp) is a handy, handy device in analog-circuit design. Recall that the differential amplifier ideally subtracts the input voltages, and multiplies the difference by a gain factor (here, A) to produce an output signal.

\[V_{out} = A(V_{in+} - V_{in-}) \]

The operational amplifier is basically a differential amplifier, but with large gain (with larger=better, where op-amps are concerned). The gain A here is called the open-loop gain of the op-amp, for reasons that will become more apparent soon. For real op-amps, gains typically range from around 46 dB on the low end (for low-quality amplifiers, or amplifiers where other engineering considerations compromised the gain), to around 140 dB on the high end. (Remember that 20 dB corresponds to a factor of 10 in voltage, so 140 dB means $A = 10^7$.) For more specific examples, let’s summarize the gains of a few classic op-amps:

- **741C**: has BJT inputs, $A = 86$ dB, a famous, old op-amp that is cheap, and not so great anymore (there are better choices, even among cheap op-amps).
- **LF411**: has JFET inputs, $A = 88$ dB, a cheap op-amp, which is really not bad, and a good “default op-amp” in noncritical applications (Horowitz and Hill call this their “jelly bean”).
- **OPA111B**: has JFET inputs, $A = 120$ dB, a venerable, precision, low-noise op-amp, but expensive.

6.1.1 Usage: Open-Loop

There are two basic ways to use an op-amp: in the first, we take advantage of the high gain, and in the second, we throw away some of the high gain. The first application, where we use the full gain of the op-amp, is called open-loop mode, and the op-amp behaves as a comparator. To explain this, note that the op-amp is an active device, and requires a power supply; often op-amps are powered by split ±15-V power supplies, so the output can go either positive or negative. The output, of course, cannot exceed the power-supply voltages (and can typically the output range, or output swing, of the op-amp is a volt or two less than the supply range). Now when the output formula,

\[V_{out} = A(V_{in+} - V_{in-}) \]
Chapter 6. Operational Amplifiers

predicts that V_{out} should be outside the supply-voltage range, what really happens is that the output rails; for example, if the output should be $+50$ V, but the power supplies are ± 15 V, the output will rail at $+15$ V (or more likely a bit lower, say around 14.3 V).

Then the comparator action of an op-amp is as follows:

1. If $V_{\text{in}+} > V_{\text{in}-}$ by at least a few mV, then the V_{out} rails at the positive supply voltage.
2. If $V_{\text{in}+} < V_{\text{in}-}$ by at least a few mV, then the V_{out} rails at the negative supply voltage.

That is, the op-amp compares the input voltages, and swings the output to the appropriate rail to indicate which one is bigger. There are specialized op-amps, called comparators, that are optimized to do this, and we will consider comparator circuits in more detail later. For now, note that regular op-amps can be used in this way, though this is not the most common usage.

6.1.2 Usage: Closed-Loop

In closed-loop mode or negative-feedback mode, op-amps have some connection from the output to the inverting ($-$) input. The net effect is to reduce the gain. Why bother to have an op-amp with extremely high open-loop gain only to reduce it in closed-loop mode? Well, it turns out that when you do this, the resulting circuit behaves well, in the sense that its behavior will be (mostly) independent of the device properties. This becomes more true with increasing open-loop gain. This trick of using negative feedback is a really nice trick, and opens up a lot of possibilities for cool circuits.

6.2 Op-Amp “Golden Rules”

In the simplest method for analyzing op-amp circuits, we will assume that we are dealing with an ideal op-amp. This means that we will assume the following two rules:

1. No current flows into or out of the inputs. (Current can of course flow into or out of the output, as well as the power-supply terminals, which we haven’t bothered to label thus far.)
2. Either $V_{\text{in}+} = V_{\text{in}-}$, or the output is railed. Basically we are assuming that the open-loop gain A is so large, that the only way for the output to not be railed is for $V_{\text{in}+}$ and $V_{\text{in}-}$ to be basically the same, because

$$V_{\text{in}+} = V_{\text{in}-} = \frac{V_{\text{out}}}{A} \approx 0. \quad (6.2)$$

Remember that for the output not to rail, there must generally be negative feedback. In this case the output does whatever it needs to do to make sure the input voltages are approximately equal.

Using just these two rules, we can analyze the basic behavior of most op-amp circuits.

6.3 Basic Op-Amp Circuits

6.3.1 Unity-Gain Buffer/Follower

The first circuit is simple: the unity-gain buffer, or voltage follower. Here, $V_{\text{out}} = V_{\text{in}}$, and this is mostly useful to buffer a high output impedance or a low input impedance. The improvement here on the transistor followers is that this circuit works for dc voltages, not just biased ac voltages.
To analyze this, note that the output is shorted to the inverting input, providing negative feedback. Then

\[V_{\text{in}^-} = V_{\text{out}}. \] (6.3)

But the second op-amp rule says that \(V_{\text{in}^+} = V_{\text{in}^-} \), so \(V_{\text{in}^+} = V_{\text{in}} \), or

\[V_{\text{out}} = V_{\text{in}^-}. \] (6.4)

Hence, this circuit has unity gain for dc signals. We will return later to the question of the input and output impedances of this circuit, but we expect the input impedance to be high, considering that ideally no current flows into the input. But typically, we expect input impedances of \(\sim 10^8 \) \(\Omega \) for op-amps with BJT inputs, and \(\sim 10^{12} \) \(\Omega \) for op-amps with JFET inputs.

6.3.2 Inverting Amplifier

The **inverting amplifier** is useful as a basic amplifier *with* gain, and not only because it has many useful variations.

![Inverting Amplifier Circuit](image)

To analyze this circuit, assume a current \(I \) flows into the input. Golden rule 2 says that the inverting-input voltage \(V_{\text{in}^-} \) must be zero, so

\[I = \frac{V_{\text{in}}}{R_1}. \] (6.5)

Then according to the first rule, no current goes into the input, so it must all go through the feedback resistor \(R_2 \). Then applying Ohm’s law across the feedback resistor,

\[0 \text{ V} - V_{\text{out}} = IR_2, \] (6.6)

or putting in the previous expression for \(I \) and solving for the output voltage,

\[V_{\text{out}} = -\frac{R_2}{R_1}V_{\text{in}}. \] (6.7)

Defining the **closed-loop gain** \(G \) as

\[G := \frac{V_{\text{out}}}{V_{\text{in}}}, \] (6.8)

we can write the closed-loop gain of the inverting amplifier as

\[G = -\frac{R_2}{R_1}. \] (6.9)

This must be smaller than the open-loop gain, otherwise the assumption of negative feedback breaks down.

Now it’s useful to try to get an idea of how feedback works in this circuit to maintain the advertised output voltage. Let’s take the simple case \(R_1 = R_2 \), for unity gain (\(G = -1 \)). Suppose the output voltage is initially zero, and we suddenly introduce an input \(V_{\text{in}} = 1 \text{ V} \).
• Then the R_1–R_2 pair acts as a voltage divider, putting the voltage V_{in-} at the inverting input at 0.5 V. Since the inverting input is above the (grounded) noninverting input, the output “wants” to go down in voltage.

• Suppose the output overshoots to, say, -2 V. Then $V_{in-} = -0.5$ V, and the inverting input is below the noninverting input, so the output wants to go up.

• The only output that causes the inputs to be balanced is the “proper” output of -1 V. Any deviation away from this makes the op-amp want to drive the output towards this value. So not only does it satisfy the golden rules, but it is stable, in that the op-amp will correct for deviations away from this value.

This one of the powers of negative feedback: robustness to deviations from the proper output (e.g., due to power-supply noise). If the feedback is not negative, then more complicated behaviors like oscillation may result; we will return to this useful case later.

6.3.3 Noninverting Amplifier

It is also possible to build a **noninverting amplifier** with gain, as shown below.

Using that R_1 and R_2 form a voltage divider,

$$V_{in} = V_{in+} = V_{in-} = \frac{R_1}{R_1 + R_2} V_{out}.$$ \hfill (6.10)

Thus, the closed-loop gain is

$$G = \frac{R_1 + R_2}{R_1} = 1 + \frac{R_2}{R_1}.$$ \hfill (closed-loop gain, noninverting amplifier) \hfill (6.11)

Note that in the inverting-amplifier case, sub-unity gains are possible if $R_2 < R_1$, but here, the smallest possible gain is unity. Like the unity-gain buffer, this circuit enjoys high input impedance; the input impedance in the inverting case is just R_1.

6.3.4 Summing (Inverting) Amplifier

A useful variation on the inverting amplifier is the **summing amplifier**, which combines multiple input voltages with different gains to obtain the output. (Note that you can’t easily add voltages in passive circuits, which makes this circuit useful.)
6.3 Basic Op-Amp Circuits

6.3.5 Circuit Practice: Differential Amplifier

Another classic operational amplifier is shown below. This takes the difference of two input signals, and implements a closed-loop gain given by the ratio of resistors. Normally, we save the circuit practice for the end of the chapter, but here you should work this circuit out right away to review the concepts thus far before going on.

![Differential Amplifier Circuit Diagram]

This circuit relies on the resistor values being well-matched for accuracy. Show that this circuit behaves as advertised.

Solution. First, we have a voltage divider at the noninverting input:

\[V_{in+} = \frac{R_2}{R_1 + R_2} V_+ \]

(6.14)

Similarly, we have a voltage divider between two voltages at the inverting input:

\[V_{in-} = \frac{R_2}{R_1 + R_2} V_- + \frac{R_1}{R_1 + R_2} V_{out} \]

(6.15)
Setting these two voltages equal, we get

\[R_2 V_+ = R_2 V_- + R_1 V_{out}, \]

(6.16)

or

\[V_{out} = \frac{R_2}{R_1} (V_+ - V_-), \]

(6.17)

as desired.

6.4 Op-Amp Filters

When we were studying passive, linear circuits with resistors, capacitors, and inductors, we saw that the reactive elements (capacitors and inductors) acted like frequency-dependent resistors. The resulting circuits attenuated the input signal in a frequency-dependent way, leading to passive filters for signals. We can do the same thing with op-amps: they open up new possibilities as well as straightforward improvements on the passive circuits.

The most important and fundamental op-amp filters are the op-amp versions of the passive integrator and differentiator. The op-amp versions have their own problems, but mainly because they have overall much more ideal behavior.

6.4.1 Op-Amp Differentiator

Recall the passive differentiator (Section 2.2.2), shown below.

![Passive Differentiator Diagram]

Remember that this works intuitively as follows: The voltage across the capacitor is proportional to the charge \(Q = CV \). Current \(I \) flows from the capacitor through the resistor, where current is the derivative of charge \(I = dQ/dt \). The resistor converts current to voltage \(V = IR \), so the output is the derivative of the input. But, for the output to be the derivative of the input, we had to assume here that the output voltage is small, otherwise the voltage across the capacitor is \(V_{in} - V_{out} \), not merely \(V_{in} \).

We can improve this, essentially by using the op-amp to decouple the capacitor and resistor voltages as follows.

![Op-Amp Differentiator Diagram]

Intuitively, the current \(I \) flows in through the input, and the voltage across the capacitor is \(V_{in} - V_{in-} = V_{in} \), enforced by the op-amp. This same current \(I \) gets converted to a voltage, via the feedback resistor.
To show this quantitatively, let’s use the fact that at fixed frequency \(\omega \), this is just an inverting amplifier. The gain is \(G = -R_2/R_1 \), where we should replace \(R_2 \) by \(R \), and \(R_1 \) by \(X_C = i/\omega C \). Then

\[
V_{\text{out}} = -\frac{R}{X_C} V_{\text{in}} = i\omega RV_{\text{in}}. \tag{6.18}
\]

Now remember that at fixed frequency \(\omega \), we can identify \(\frac{d}{dt} \equiv -i\omega \), so

\[
V_{\text{out}} = -RC \frac{d}{dt} V_{\text{in}}. \tag{6.19}
\]

(6.19) (op-amp differentiator)

Note that the \(RC \) time and the time derivative conspire to make the voltage units come out right. Note also that the frequency-dependent gain

\[
G(\omega) = i\omega RC \tag{6.20}
\]

(always increases with frequency, whereas the passive differentiator (high-pass filter) had a gain (transfer function) that leveled off at unity for frequencies above the \(\omega_{3\text{dB}} \) (Section 2.3.7).

6.4.2 Op-Amp Integrator

The passive and active (op-amp) integrators are similar. Recall the passive integrator below (Section 2.2.1).

Here, the resistor converts the input voltage to a current \((V_{\text{in}} = IR) \), and the capacitor develops a voltage proportional to charge \((Q = CV) \), which is the integral of current. Hence the output voltage is the integral of the input voltage. But we had to assume small \(V_{\text{out}} \), so that the voltage across the resistor is \(V_{\text{in}} - V_{\text{out}} \approx V_{\text{in}} \).

Again, the op-amp helps here by decoupling the capacitor and resistor voltages, while connecting their currents, by maintaing the inverting input at virtual ground. The op-amp integrator is shown below.

This works more like we said: The input resistor converts the voltage \(V_{\text{in}} \) to current \(I \) \((V_{\text{in}} = IR \), with no need for small \(V_{\text{out}} \)), and the capacitor integrates the current to store charge, which produces an output voltage.

For the quantitative analysis, we again use the inverting-amplifier gain \(G = -R_2/R_1 \), with \(R_2 \) replaced by \(X_C \), and \(R_1 \) replaced by \(R \). Then

\[
V_{\text{out}} = -\frac{X_C}{R} V_{\text{in}} = -\frac{i}{\omega RC} V_{\text{in}}. \tag{6.21}
\]
so that the frequency-dependent gain is

\[G(\omega) = -\frac{i}{\omega RC}. \]

(6.22)

(op-amp integrator gain)

Rearranging the factor of \(\omega \),

\[-i\omega V_{\text{out}} = -\frac{1}{RC} V_{\text{in}}. \]

(6.23)

Then using \(\frac{d}{dt} \equiv -i\omega \),

\[\frac{d}{dt} V_{\text{out}} = -\frac{1}{RC} V_{\text{in}}. \]

(6.24)

Integrating, we have

\[V_{\text{out}}(t) = V_{\text{out}}(0) - \frac{1}{RC} \int_0^t dt' V_{\text{in}}(t'). \]

(6.25)

(op-amp integrator)

Like the differentiator, this amplifier gives the integral with an overall minus sign. It also depends on the initial output state.

6.4.3 Differentiator Issues

From Eq. (6.20), the main problem with the differentiator is that it has a gain that increases as \(\omega \), so the gain becomes arbitrarily large for large frequencies. This causes potential problems in two ways. First, differentiators suffer from bad high-frequency noise, and second, the high gain can possibly de-stabilize the amplifier. The solution is to add an extra, small, parallel capacitance in the feedback loop, and an extra, small, series resistance in the input.

How do we think about this? First of all, the input network crosses over from capacitive to resistive at an input RC frequency. Above this frequency, the resistance dominates, and in combination with the feedback resistor, the amplifier acts like an inverting amplifier, where the gain is flat with frequency. The feedback network also defines a second RC frequency; above this frequency, the capacitor bypasses the resistor. Then the capacitor, in combination with the input resistor, makes the op-amp behave as an integrator, where the gain decreases with frequency. The net effect is shown schematically in the gain plot below.
6.4 Op-Amp Filters

The solid line is the differentiator response, and the dashed line shows the “tempered” differentiator, including the effects of the input resistor (when the gain flattens) and the feedback capacitor (when the gain “rolls off,” or decreases).

6.4.4 Integrator Issues

The integrator has the opposite problem: from Eq. (6.22), the gain scales as ω^{-1} over all frequencies, so the gain at dc diverges. This essentially means that the integrator has no “natural” dc level, and any dc input (even a spurious dc input) will eventually rail the op-amp. The fix for this is to put a large resistance in parallel with the feedback capacitor, as shown below.

The feedback network then defines an RC frequency (a small frequency, since the resistance is large), below which the resistor dominates the feedback impedance, and the op-amp acts as an inverting amplifier. This levels the low-frequency gain to some finite value, as illustrated schematically below.
This shows the normal −6-dB scaling of the integrator as the solid line, with the dashed line showing the “tempered” behavior with the feedback resistor rolling off the low-frequency gain.

6.4.5 Sources of Integrator Error

We have mentioned that the basic integrator is very sensitive to spurious dc inputs, due to the divergent dc gain. What are these spurious dc offsets? There are two main sources for op-amps: input bias current, and input offset voltage.

6.4.5.1 Input Bias Current

In the ideal op-amp we stated the golden rule that no current flows into the inputs. However, this isn’t quite true. The idea behind the input bias current is that in fact a small current flows into (or out of) the inputs, which makes sense, as the op-amp inputs drive internal transistors, which either require current to work or allow a bit of leakage current to flow. For BJT-input op-amps, the input bias current is ∼10 nA, while for JFET-input op-amps, the input bias current is ∼10 pA. For example, the precision OPA602C with JFET inputs has a 1-pA input bias current (compared to the 741C with BJT inputs at 500 nA). Thus, JFET-input op-amps are the clear winner in this regard. To some extent, it is possible to compensate for the input bias current by injecting a small, adjustable current at the inverting input.
Here, V_{\pm} are the power supplies. The idea here is essentially the same as for the summing amplifier: the adjustable voltage and resistance (or Thévenin resistance of the potentiometer) causes a current to flow—a small one, if the resistance is large. This can be adjusted to cancel the input bias current, for example by adjusting it until the output is stationary when $V_{\text{in}} = 0$. However, this isn’t perfect: the input bias current depends on temperature, for example, so compensating at one temperature doesn’t guarantee compensation everywhere. If this is a concern, it is far better to start with a good op-amp, rather than try to “fix” a crappier op-amp.

Another side effect of the input bias current is that the inputs need some dc path to ground. So, for example, it would be a bad idea to build an ac-coupled follower like this:

![Bad circuit diagram]

\[V_{\text{out}} = V_{\text{in}} \]

The inverting input is fine, as the path to “ground” is via the output. However, the noninverting input has no path to ground, and the input bias current will charge the capacitors until the inputs go out of range with respect to the power supplies, causing real problems. The fix is to use an input high-pass network, as shown below.

![Better circuit diagram]

\[V_{\text{out}} = V_{\text{in}} \]
Now, the resistor supplies the path to ground. There is some offset voltage error given by the product of the bias current and the resistance, but this can be made small (in the previous circuit, this error was huge because the impedance to ground was effectively very large).

6.4.5.2 Input Offset Voltage

The other main effect is the input offset voltage. For an ideal op-amp, the output is zero when the inputs are exactly equal. But for a real op-amp, the output is zero when the inputs are almost the same, or said another way, when there is a small “error” voltage δV between the inputs. This is the input offset voltage, and is due to manufacturing variation when producing op-amp devices. Typically, the input offset voltage ranges from $\sim 10 \mu V$ to a few mV, with BJT inputs faring better than FET inputs. For example, the FET-input, precision OPA602C has 0.1 mV typical input offset voltage, and 0.25 mV max (compare to the 741C, which is 2 mV typical; this is not as much worse, when compared to the bias current). In the integrator, the net effect is that a zero V_{in} causes integration (the input should be set to the input offset voltage for no integration to occur). The compensation circuit above can also compensate for this effect, because it is equivalent to summing another input voltage with V_{in}. Most op-amps also have pin connections for a potentiometer to allow nulling of the input offset voltage (typically, for a single op-amp in a dual-inline package, a trim-pot is connected across pins 1 and 5). Again, while this can be trimmed, the drift will be of the same order as the uncompensated error, so in critical applications, it’s better to choose an op-amp with a low offset voltage, rather than try to correct for the offset voltage of a “bad” op-amp.

6.4.6 Integrator Applications

The integrator is a widely useful circuit. One example is in feedback-control circuits (circuit to generate a stable voltage, current, temperature, etc.)—it turns out integration is useful in obtaining stable operation, a point to which we will return later.

Literal integration of signals is also a useful task. For example, suppose we have an optical-pulse signal from a laser pulse on a photodetector. If we integrate the signal, we can get the pulse energy (or pulse fluence). In this case, it is useful to be able to reset the integrator just before we expect to receive each pulse, and the circuit below takes care of this.

The MOSFET here acts as an analog switch, that dumps the capacitor charge when it is necessary to reset the integrator. Note that we are assuming a positive input voltage, and thus a negative output voltage. If the output voltage may have either sign, a second, reversed MOSFET may be necessary to prevent dumping the capacitor charge during integration.
6.5 Instrumentation Amplifiers

Recall the op-amp differential amplifier, shown below, from Section 6.3.5.

This circuit works fine, but has some disadvantages:

- This circuit does not have high input impedances, especially for large gains. Specifically, you should convince yourself that the noninverting input has an input impedance $R_1 + R_2$, while the inverting input has an input impedance R_1. But, for example, if $R_1 = 1 \, \text{k} \Omega$ and $R_2 = 10 \, \text{k} \Omega$, so that $G = 10$, the input impedance is at worst $1 \, \text{k} \Omega$.

- The circuit requires accurately matched resistor pairs to achieve a high CMRR. To obtain a CMRR of 80 dB, the resistors must have a tolerance of around 0.01% at $G = 1$; resistors this accurate are typically wirewound, but these don’t work well at high frequencies.

- Any source impedances add to the input R_1’s. That is, the sources must act as ideal voltage sources, otherwise the gain and CMRR may be affected. For example, if $R_1 = 1 \, \text{k} \Omega$, the source impedance must be $10 \, \Omega$ or less for 1% gain accuracy. Even worse, the source impedances must be matched to ensure good CMRR.

The main solution to these problems, especially that of source impedances interacting with the resistances in the op-amp circuit, is to simply buffer the inputs. A differential amplifier with buffered (high-impedance) inputs is called an instrumentation amplifier, and the basic circuit is shown below.

The point is that this entire circuit should come in a single package, with laser-trimmed (matched) resistor networks, for good performance and to make life easy. This also guarantees that any errors in the matched resistor pairs due to temperature drifts is kept to a minimum.
6.5.1 “Classic” Instrumentation Amplifier

What you usually find packaged as an instrumentation amplifier is actually a bit different than the above circuit. The inputs are still buffered for high impedance, but the input buffers are hooked up in a resistor chain as shown below, and the resulting difference is computed by a unity-gain differential amplifier.

\[V_{\text{out}} = \left(1 + \frac{2R_2}{R_1}\right)(V_+ - V_-) \]

The main advantage here is that the gain can be set by changing only one resistor, here \(R_1 \). This resistor is usually not included in the package, but rather the package has pins for an externally connected resistor for a user-settable gain. (You should be able to see that when \(R_1 \) is omitted, the input amplifiers reduce to buffers, and the output is just the difference of the inputs.) Another feature to note is that the ground connection of the differential amplifier is usually given as a “reference” (REF) pin on the package. This allows the subtraction to be referenced to another voltage besides ground, which is sometimes convenient. We will give an example below in Section 6.5.2.3.

To analyze the circuit above, let’s focus on just the first resistor chain.

\[I = \frac{V_+ - V_-}{R_1}. \] \hspace{1cm} (6.26)

Then the voltage drop across the top resistor in the chain gives

\[V_{\text{out}+} = V_- IR_2 = V_- - \frac{R_2}{R_1}(V_+ - V_-), \] \hspace{1cm} (6.27)
and across the bottom resistor in the chain,

\[V_{\text{out}+} = V + IR_2 = V_+ + \frac{R_2}{R_1} (V_+ - V_-). \]
(6.28)

Now the differential amplifier takes the difference between \(V_{\text{out}+} \) and \(V_{\text{out}-} \), so

\[V_{\text{out}} = V_{\text{out}+} - V_{\text{out}-} = (V_+ - V_-) + \frac{2R_2}{R_1} (V_+ - V_-), \]
(6.29)

or

\[V_{\text{out}} = \left(1 + \frac{2R_2}{R_1} \right) (V_+ - V_-). \]
(6.30)

As a gain, this reads

\[G = \left(1 + \frac{2R_2}{R_1} \right). \]
(6.31)

Thus we see again if \(R_1 \) is omitted (\(R_1 = \infty \)), the gain is unity, while other values can serve to increase the gain above unity.

A good example of an instrumentation amplifier is the INA128 from Burr-Brown, one of a family of “INAXXX” instrumentation amplifiers. In the INA128, the internal \(R_2 \) resistors are 50 kΩ, so the external resistor \(R_G \) (i.e., \(R_1 \)), sets the gain via

\[G = 1 + \frac{50 \text{kΩ}}{R_G}. \]
(6.32)

The CMRR is 86 dB at unity gain (\(R_G = \infty \)), and 125 dB at \(G = 100 \). The input impedance is \(\sim 10^{10} \) Ω, and the input bias current is 2 nA. These cost \(\sim 8 \) each, depending on the grade (quality) and package.

6.5.2 Instrumentation-Amplifier Applications

6.5.2.1 Thermocouple Amplifier

The instrumentation amplifier turns out to be really useful in a number of applications, particularly in amplifying high-source-impedance sensors that require high gain. One example, shown below, is a simplistic thermocouple amplifier.

A **thermocouple** is a junction of two dissimilar metals that develops a voltage that is related (in an nonlinear way) to the temperature. Typical signal levels from thermocouples range from \(\sim 10 \) µV to 100 µV, so significant gain is useful here. Note that this circuit is simplistic in the sense that it is only useful for measuring **relative** temperature changes. Absolute calibration requires computing the difference between two thermocouples, one held at a known reference temperature (e.g., an ice bath). This is called **cold-junction compensation**, and there are special amplifiers that can emulate the cold junction electronically—a good example is the AD594.

One other thing to note is the 10-kΩ resistor, which is necessary for the circuit to function. Why?
6.5.2.2 Differential Transmission for Noise Rejection

Another good application of the instrumentation amplifier is as a receiving input for a signal that is transferred between two instruments. For low noise, the signal is usually sent via coaxial cable—a center conductor shielded by a cylindrical outer conductor, which is usually used as a ground connection, so the grounded jacket protects the center (signal) conductor from external interference. The simplest way to send a signal between instruments is just to connect it as shown below—use a jack on either instrument, with the coaxial cable in between, the outer conductor grounded on either end.

\[V_{\text{out}} \]

coaxial-cable connection

\[V_{\text{in}} \]

sending circuit

receiving circuit

This is a bad idea, though, because it introduces a ground loop: both instruments are generally grounded via their power supplies, and the grounds are also connected via the coaxial-cable jacket. This means that the ground has a big loop for a path, and changing electromagnetic fields can induce and EMF in this loop. The symptoms are noise pickup, such as 60-Hz buzz in audio systems, or radio-frequency interference in wide-bandwidth circuits.

One solution is to power one instrument from a battery, so that it “floats” (i.e., there is no ground connection). This is not always convenient, but it is also possible to use an isolation transformer to break the ground connection via the power supply. (Isolation transformers for this purpose are commercially available, but usually require a safety ground connection to be defeated before it truly provides ground isolation.) However, having instruments grounded is otherwise desirable for safety and noise immunity, so another solution is to use an instrumentation amplifier as a differential receiver on the receiving instrument, as shown below.

\[V_{\text{out}} \]

coaxial-cable connection

\[V_{\text{in}} \]

sending circuit

receiving circuit

This also breaks the ground loop, and any induced interference, which is common to the ground and signal conductors in the cable, will be cancelled in the subtraction. (This also works for twisted-pair cable, in place of the coaxial cable, as is usually used in Ethernet networks.) Note that the “ground” conductor on the received is still tied to ground via a resistor and capacitor. This prevent large induced input swings, in order to protect the amplifier (and remember we need the resistor to provide a dc path to ground).

Another useful trick is to use the instrumentation amplifier to provide variable gain on the input, which is easy to accomplish by replacing \(R_G \) by a switch-selectable array of gain resistors (e.g., using a rotary switch to select gain), as shown below.

\[R_G \]

4.99 kΩ (\(G = 10 \))

12.1 kΩ (\(G = 5 \))

49.9 kΩ (\(G = 2 \))

∞ Ω (\(G = 1 \))

\[V_{\text{out}} \]

\[R_G \]

A logarithmic spacing of gains (1, 2, 5, 10, 20, 50, 100, \ldots) covers a wide gain range in a useful way.
6.5.2.3 AC-Coupled Inputs with High Impedance

Sometimes it is useful to have an ac-coupled input, but with high input impedance. For example, we may have a sensor with a weak signal and high source impedance that requires large amplification, but if it has a large dc bias, a large gain would take the dc bias out of range. If we just use a capacitor to block dc on the input, this is bad, remember, because we need a dc path to ground on each input.

An improvement is to introduce a resistor, which makes a high-pass filter. The resistor prevents problems from input bias currents.

However, in the pass band, the input impedance is limited to \(R \), which will not be nearly as good as a “bare” input on a decent op-amp. A clever solution is to use an integrator to feed back the output of an instrumentation amplifier to the reference input.

Assume for simplicity that the instrumentation amplifier is set for unity gain, so

\[
V_{\text{out}} = V_+ - V_- + V_{\text{REF}}. \tag{6.33}
\]

That is, the reference voltage is the reference for ground, so the amplifier sets \(V_{\text{out}} - V_{\text{REF}} \) to the difference \(V_+ - V_- \). Note that the only steady state occurs when the integrator is at steady state, which is when the integrator input (\(V_{\text{out}} \)) is zero. If \(V_{\text{out}} \neq 0 \), the integrator will build up a voltage until it cancels the steady output voltage on a time scale \(RC \) (with negative feedback due to the inverting nature of the integrator). High-frequency signals are not affected by the integrator, because the integrator has no time to “catch up” to the rapidly changing output (which is saying that the integrator gain is suppressed at high frequencies as \(1/\omega \)). To make this input switchable between ac and dc, a switch can short across the capacitor to change the instrumentation amplifier to dc mode.

6.6 Practical Considerations

In this section, we will deal some more with some deviations of op-amps from their ideal behavior, and a few common tricks to mitigate these effects.
6.6.1 Input-Bias Currents and Precision Amplifiers

Before, when we were dealing with integrating amplifiers (Section 6.4.4), we talked about input-bias currents and how they can cause problems by charging up the integrating capacitor, even with a zero input voltage. We also talked about how it is critical to have a dc path to ground for each input to prevent similar charging problems. However, input bias currents can still cause problems (albeit usually less serious) in “regular” op-amp circuits like inverting and noninverting amplifiers.

6.6.1.1 Inverting Amplifier

For example, let’s return to the inverting amplifier (Section 6.3.2).

\[V_{\text{out}} = -\frac{R_2}{R_1} V_{\text{in}} \]

As a numerical example, consider a 741C (a crappy op-amp that will make such problems obvious), with a worst-case input bias current of \(0.5 \mu A\). If we take \(R_1 = 10 \text{k}\Omega\) and \(R_2 = 1 \text{M}\Omega\) (for \(G = -100\)), then the inverting input sees a Thévenin-equivalent input resistance of \(R_{\text{Th}} = R_1 \parallel R_2 \approx 10 \text{k}\Omega\). Then the input bias current leads to a bias voltage of \((0.5 \mu A)(10 \text{k}\Omega) = 5 \text{mV}\) at the input. With a gain of \((-100)\), this leads to an output bias voltage of 5 V worst-case, which is pretty bad! (That is, for \(V_{\text{in}} = 0\), it is permissible according to the 741C’s specs to have \(|V_{\text{out}}|\) as much as 5 V.)

How do we get around this? There are a few approaches:

- Since this is a dc-bias issue, this is no problem for ac circuits—just make sure to design for zero dc gain in the circuit (using a blocking capacitor, for instance).

- The main problem in the example was an underwhelming performer of an op-amp. Of course, we can do better, and recall that FET-input op-amps are superior to BJT-input op-amps in terms of bias currents. Precision BJT-input op-amps are a good option, too. For example, the FET-input LF411 has \(I_{\text{bias}} \approx 0.2 \text{nA}\), so the output error is only 0.2 mV in the above example.

- For BJT-input op-amps, or in high-precision circuits, we can also reduce errors by balancing input impedances, which requires a few examples.

6.6.1.2 Balanced Input-Impedances: Inverting Amplifier

To balance the input impedances of the inverting amplifier, recall that the problem came from the inverting input “seeing” an effective source impedance of \(R_1 \parallel R_2\). We can simply insert an equivalent source impedance on the noninverting input as shown below.
This resistor does nothing for an ideal op-amp, because no current flows through the resistor (and thus the resistor drops no voltage), but for a real op-amp, this trick reduces bias errors. Of course, all this assumes V_{in} acts like an ideal voltage source (i.e., it has a source impedance much smaller than R_1), otherwise the source impedance of V_{in} must also enter into the compensation scheme.

6.6.1.3 Balanced Input-Impedances: Noninverting Amplifier

Similar balancing tricks are possible for noninverting amplifiers. Recall the basic noninverting amplifier (Section 6.3.3), shown below.

Here, the inverting input sees a source impedance of $R_1 \parallel R_2$, due to the voltage divider. Thus, it is again a simple matter to insert an equivalent source impedance for the other input.

Balancing input impedances is a bit trickier for ac-coupled amplifiers. A good example is shown below.
Chapter 6. Operational Amplifiers

\[V_{\text{out}} = \left(1 + \frac{R_2}{R_1}\right) V_{\text{in}} \]

A high-pass filter is used on the input to block the dc component (remember the resistor \(R \) is necessary to provide a dc path to ground for the input bias current). We need to balance impedance at dc, so the noninverting input sees a source impedance of \(R \). An easy way to ensure the same impedance for the inverting input is to insert another resistor \(R \) in the feedback loop, and simply ensure \(R \gg R_1 \parallel R_2 \), so we don’t have to worry about \(R_1 \) and \(R_2 \) when setting the resistances.

6.6.1.4 Input Offset Currents

In addition to input bias current, there is input offset current, which is basically the difference between the input bias currents for the two inputs of an op-amp. While input bias current is more or less intrinsic to an op-amp’s design, input offset current is due to manufacturing asymmetry. Thus, even with balanced inputs, there will be some bias signal, but much smaller than in the unbalanced case. For example, the 741C has an input offset current of 200 nA (compared to 0.5 \(\mu \)A for input bias current), and the LF411 has an input offset current of 0.1 nA (compared to 0.2 nA for input bias current).

6.6.1.5 Common-Mode Rejection Ratio

At this point, we can return to another source of error, the common-mode rejection ratio (CMRR), which we introduced in Section 4.10.3 for the transistor differential amplifier, and we discussed it again for instrumentation amplifiers in Section 6.5. The typical CMRR range of op-amps is around 50–125 dB. But now look back at the op-amp inverting and noninverting amplifiers above. The inverting amplifier is insensitive to bad CMRR, compared to the noninverting amplifier, which is relatively sensitive to common-mode signals. Why is this? (What are the op-amp input voltages in each case?)

So while the noninverting amplifier looks good because of its very-high-impedance input, it is not quite as precise as the inverting amplifier. The latter is better in high-precision applications.

6.6.2 Power Supplies

So far, we haven’t talked so much about the power-supply connections of op-amps. We have talked about the rule that no current flows in or out of the inputs (or at least there is only a very small current). Clearly, a current must flow in or out of the output in order for interesting things to happen. This output current must come from somewhere, and that is where the power-supply connections come in.

Op-amps have two supply connections, and they are often powered from split supplies of \(\pm 15 \) V. More generally we will call these supply voltages \(V_{\text{supply,}} \pm \), and the explicit connections are shown below.
There are also single-supply op-amps, where V_{supply^-} can be ground. Usually these can also be powered by split supplies, but the difference is as follows. Op-amps involve transistors, so the output can usually only swing to within a volt or two of either power-supply rail. Single-supply op-amps are designed with outputs that can swing all the way to the negative rail (so the output can swing to ground if in a single-supply circuit).

6.6.2.1 Power-Supply Rejection

Ideally, the behavior of an op-amp is completely independent of the power supplies. That is, suppose the ideal op-amp output is 5 V, and the op-amp is powered from ±15 V. Then suppose the power supply changes to ±16 V. The output should be determined only by the circuit inputs and feedback network, and so shouldn’t change at all, but in reality, it will change slightly, say to 5.1 V, to fabricate an example.

The (in)sensitivity of an op-amp to power-supply fluctuations is characterized by the power-supply rejection ratio (PSRR). Ideally, the PSRR is very large, meaning the op-amp effectively “rejects” fluctuations in the power supply. The PSRR is defined with respect to the op-amp inputs, and is the ratio of the change in the power supply to the corresponding effect on the op-amp, referenced to a change at the input. (This accounts for the fact that power-supply fluctuations will have larger effects on the output for circuits with high gain.) As an example, suppose we have a PSRR of 120 dB, which is a ratio of 10^6 in voltage. Then a 1-V change in the power supply corresponds to a 1-µV change at an input to the op-amp. We must then get into the specific connections of the op-amp circuit (i.e., the gain) to determine the change in the output voltage. (So a unity-gain follower would also see a 1-µV change at the output.)

As a real example, the LF411 has a PSRR at dc of 100 dB typical, 80 dB minimum. The PSRR is better for the + supply than for the − supply, and the PSRR is worse at higher frequencies, dropping to ∼90 dB at 100 Hz, and ∼30 dB at 100 kHz.

6.6.2.2 Power-Supply Bypass Capacitors

One common trick for improving the behavior of op-amp circuits is to use “bypass capacitors” on the power-supply leads of op-amps. The basic connection is shown schematically below.

The values of these bypass capacitors are not critical, but typically they would be 0.01-µF (monolithic) ceramic, 0.1-µF (monolithic) ceramic, or 1-µF tantalum (polarized) capacitors. These capacitors should also be placed physically as close as possible to the op-amp power-supply pins.
Why use bypass capacitors? In a circuit, for example, on a printed circuit board (PCB), there may be long wires (or PCB traces) connecting the op-amp supply pins to the power supplies. Schematically this is shown below, where the wires have some intrinsic resistance and inductance.

The inductance is particularly problematic, as it means the path to the power supply has high impedance. The capacitor acts to short-circuit, or bypass, the inductance of the power-supply lead by providing a low-impedance path to ground at high frequencies. Otherwise, what can happen is as follows. A sudden change in the output of an op-amp (in response to an input change) implies a quick change in the power-supply currents. Inductance in the power-supply leads means that the voltage will drop if, for example, the op-amp is suddenly demanding more power-supply current. As we have seen, this can lead to output inaccuracies, because the op-amp PSRR is worse at high frequencies. In the worst case, the op-amp may even self-oscillate.

Another way to think of this is that the capacitor acts as a “charge reservoir” that tries to stabilize the power-supply voltages, temporarily supplying extra current as necessary when the op-amp demands it. Again, this is most effective at high frequencies, where the PSRR is bad anyway. Thus we also see the importance of using small, ceramic or tantalum capacitors (which have low inductance and respond well at high frequencies), and placing the capacitors very close to the op-amp (to bypass as much of the lead inductance as possible). On a PCB, each op-amp has its own local bypass capacitors, and the connection to ground should have very low impedance (e.g., to a ground plane, or a grounded copper layer that covers most of one side or layer of a PCB).

For critical applications, for example for a high-current amplifier, an even better approach is to use multiple, parallel bypass capacitors on each power-supply pin, as shown below.

Here the large 470-µF capacitor acts as a large charge reservoir, as appropriate for the high-current circuit, but only responds well at relatively low frequencies due to a high intrinsic inductance. Progressively smaller capacitors with lower inductance will help stabilize the power-supply voltage at higher frequencies. In this case, the smallest capacitors should be located closest to the op-amp, with the location of the large capacitors not so critical.
Another good approach for a low-current, or low-level, precision op-amp circuit is as shown below.

The idea is to add extra resistance to the power-supply lines, before the bypass capacitor. Obviously, this trick is limited to low-current circuits, so the voltage drop due to the 10-Ω resistor is small. This resistor enhances the effect of the bypass capacitor and gives improved isolation from power-supply fluctuations. This is an especially useful technique if high- and low-current amplifiers coexist in the same circuit, where feedback from the high-current to low-current amplifiers may cause the circuit to self-oscillate. Even better is to make sure the high-current and low-current ICs do not share the same power-supply lines (they should use separate lines, connected only at a point where the supply voltage is regulated, for example, by a 3-terminal regulator).

6.7 Finite-Gain Analysis

So far, we have assumed that the open-loop gain A of the op-amp is arbitrarily large. We have mainly made this assumption via the rule that the input voltages are the same in negative-feedback mode. In a real op-amp, this open-loop gain is high, but finite, ranging from about ~ 50–146 dB. So now let’s relax the assumption of infinite open-loop gain to (1) see what the effects are, and (2) to see why having a large gain is a good thing in an op-amp.

6.7.1 Noninverting Amplifier

As a first example, let’s return to the noninverting-amplifier circuit of Section 6.3.3, shown below.
Recall that the result with infinite open-loop gain was

\[V_{\text{out}} = \left(1 + \frac{R_2}{R_1}\right)V_{\text{in}}. \]

(6.34)

But now, we will use the op-amp rule

\[V_{\text{out}} = A(V_{\text{in}+} - V_{\text{in}-}), \]

(6.35)

where \(A \) is the open-loop gain, instead of just assuming \(V_{\text{in}+} = V_{\text{in}-} \). To simplify notation a bit, let’s define the voltage-divider fraction

\[\eta := \frac{R_1}{R_1 + R_2}, \]

(6.36)

so that the divided output voltage \(\eta V_{\text{out}} \) is fed back to the inverting input,

\[V_{\text{in}-} = \eta V_{\text{out}}. \]

(6.37)

Also, we have the input

\[V_{\text{in}} = V_{\text{in}+}, \]

(6.38)

so putting these equations into the op-amp rule (6.35), we have

\[V_{\text{out}} = A(V_{\text{in}} - \eta V_{\text{out}}). \]

(6.39)

Solving for the output voltage, we have

\[V_{\text{out}} = \frac{A}{1 + \eta A}V_{\text{in}}. \]

(noninverting amplifier, finite open-loop gain)

(6.40)

which defines the closed-loop gain

\[G = \frac{A}{1 + \eta A}. \]

(closed-loop gain, noninverting amplifier with finite open-loop gain)

(6.41)

Note that in the limit \(\eta A \gg 1 \), this expression reduces to the original formula

\[G_\infty = \eta^{-1} = 1 + \frac{R_2}{R_1}, \]

(6.42)

so this analysis reproduces the ideal-op-amp limit.

6.7.1.1 Gain Limits and Error

Notice that \(G \leq A \), so that the open-loop gain \(A \) limits the closed-loop gain \(G \)—negative feedback can only reduce the gain. Additionally, \(G < G_\infty \), so the ideal closed-loop gain always limits the real closed-loop gain. More specifically, assuming \(A \) to be large \((A \gg G_{\text{typ}})\),

\[G = \frac{A}{1 + \eta A} = \frac{\eta^{-1}}{1 + (\eta A)^{-1}} = \frac{G_\infty}{1 + G_\infty / A} \approx G_\infty \left(1 - \frac{G_\infty}{A}\right). \]

(6.43)

Then the fractional “error” in the gain is

\[\frac{\delta G}{G_\infty} \approx -\frac{G_\infty}{A}. \]

(6.44)

As an example, a decent op-amp has \(A \) of 100 dB, which corresponds to \(A = 10^5 \). For a \(G_\infty = 10 \) setup, the fractional error is

\[\frac{\delta G}{G_\infty} \approx -\frac{10}{10^5} = -10^{-4} = -0.01\%, \]

(6.45)

which is pretty small. For reasonably high values of \(A \), this error is usually negligible compared to the error due to the feedback-resistor tolerances.
6.7 Finite-Gain Analysis

6.7.1.2 Insensitivity to Gain Variation

Another handy result that we obtain for large \(A \) is that if \(A \) is sufficiently large, then \(G \) is insensitive to variations in \(A \). Starting with the closed-loop-gain expression above in terms of \(G_\infty \) and \(A \),

\[
G = \frac{G_\infty}{1 + G_\infty/A},
\]

(6.46)

then

\[
\frac{\partial G}{\partial A} = -\frac{G_\infty}{(1 + G_\infty/A)^2} \left(-\frac{G_\infty/A^2}{1 + G_\infty/A} \right) = \frac{G_\infty}{A(1 + A/G_\infty)},
\]

(6.47)

Then the variation \(\delta G \) in the closed-loop gain \(G \) is

\[
\frac{\delta G}{G} = \frac{\partial G}{\partial A} \delta A,
\]

(6.48)

so

\[
\frac{\delta G}{G} = \frac{1}{A(1 + A/G_\infty)} \delta A,
\]

(6.49)

so the fractional error \(\delta G/G \) is much smaller than the fractional open-loop variation \(\delta A/A \) by a factor of \(1/(1 + A/G_\infty) \approx G_\infty/A \) for large \(A \). This is a nice property because, for example, feedback with large \(A \) reduces variations of gain with frequency, for a flatter response in a closed-loop amplifier. It also reduces nonlinearity and distortion, which you can roughly think of as variations in gain with signal amplitude.

6.7.2 Feedback and Input Impedance

Negative feedback with large open-loop gain also helps quite a bit with input and output impedance. Going back to the noninverting amplifier, we can construct an explicit model for input impedance \(R_i \) as shown below.

The dashed line encompasses the “real” amplifier, which consists of an ideal op-amp and a resistor modeling the input impedance. As before, the closed-loop gain (6.41) is

\[
G = \frac{A}{1 + \eta A}.
\]

(6.50)

Since, \(V_{in^+} = V_{in} \), and \(V_{in^-} = \eta V_{out} \), we can take the input current \(I \) to be

\[
I = \frac{V_{in^+} - V_{in^-}}{R_i} = \frac{V_{in} - \eta V_{out}}{R_i} = \frac{1 - \eta A/(1 + \eta A)}{R_i} V_{in} = \frac{V_{in}}{(1 + \eta A)R_i}.
\]

(6.51)

Then the effective input impedance \(Z_{in} \) is

\[
Z_{in} = (1 + \eta A)R_i = \left(1 + \frac{A}{G_\infty}\right)R_i,
\]

(input impedance, noninverting amplifier) (6.52)
which is much larger than the intrinsic input impedance R_i if there is large open-loop gain $A \gg G_{\infty}$.

For example, the modest 741C has $R_i = 2 \, \text{M}\Omega$ typical, 300 kΩ minimum, which is not great. The open-loop gain A is typically 2×10^5, minimum 1.5×10^4, which is not bad. If $G_{\infty} = 10$, then $Z_{\text{in}} = 4 \times 10^{10} \, \Omega$ typical, or $5 \times 10^8 \, \Omega$ minimum. These are pretty high input impedances, and they can be much higher with a precision op-amp.

6.7.3 Feedback and Output Impedance

To model the effects of feedback on the output impedance, we can again introduce an explicit model, including an output resistance R_o.

Again, the dashed box represents the “real” amplifier, with an ideal op-amp and the output resistor. We will call the output of the ideal amplifier V_{out}, while the “real” output is V. There is also a current I, which we define as flowing into the output. Then setting a null input $V_{\text{in}} = 0$, we have $V_{\text{in}+} = 0$, and now $V_{\text{in}−} = \eta V$, so the op-amp rule (6.35) gives

$$V_{\text{out}} = -\eta AV. \tag{6.53}$$

Then the current is

$$I = \frac{V - V_{\text{out}}}{R_o} = \frac{V(1 + \eta A)}{R_o}. \tag{6.54}$$

Thus, the output impedance $Z_{\text{out}} = V/I$ is

$$Z_{\text{out}} = \frac{R_o}{1 + \eta A} = \frac{R_o}{1 + A/G_{\infty}}. \tag{6.55}$$

This should be much smaller than the intrinsic output impedance R_o, provided we have large open-loop gain, $A \gg G_{\infty}$.

For example, the modest 741C has $R_o = 75 \, \Omega$. With a typical open-loop gain A of 2×10^5, and $G_{\infty} = 10$, then $Z_{\text{out}} = (75 \, \Omega)/(2 \times 10^4) \approx 4 \, \text{m}\Omega$, which is quite small.

6.7.4 Circuit Practice: Finite Gain in the Inverting Amplifier

For practice in dealing with finite op-amp gain, consider the noninverting amplifier, with finite open-loop gain A. (Again, it’s best to do this before continuing, so we won’t defer this until the end of the chapter.)
Show the following:
(a) The finite-A gain is

\[G = \frac{(1 - \eta)A}{1 + \eta A}, \quad \eta := \frac{R_1}{R_1 + R_2}. \]

(closed-loop gain, inverting amplifier with finite open-loop gain) \hspace{1cm} (6.56)

(b) Take the \(A \to \infty \) limit of Eq. (6.56) and show that

\[G_\infty = -\frac{R_2}{R_1}. \]

(closed-loop gain, inverting amplifier with infinite open-loop gain) \hspace{1cm} (6.57)

(c) The input impedance is

\[Z_{\text{in}} = R_1 + \frac{R_2}{1 + A}. \]

(input impedance, inverting amplifier with finite open-loop gain) \hspace{1cm} (6.58)

(d) The output impedance is

\[Z_{\text{out}} = \frac{R_o}{1 + \eta A}. \]

(input impedance, inverting amplifier with finite open-loop gain) \hspace{1cm} (6.59)

where \(R_o \) is the intrinsic output impedance of the op-amp, as in the noninverting case.

Solution.

(a) First, the noninverting input has \(V_{\text{in}}^+ = 0 \). The inverting input has a voltage determined by a voltage divider between \(V_{\text{in}} \) and \(V_{\text{out}} \):

\[V_{\text{in}}^- = \eta V_{\text{out}} + (1 - \eta)V_{\text{in}}. \]

(6.60)

Remember \(\eta = R_1/(R_1 + R_2) \), so as a sanity check, \(\eta \to 1, V_{\text{in}}^- \) becomes connected to \(V_{\text{out}} \), and as \(\eta \to 0, V_{\text{in}}^- \) becomes connected to \(V_{\text{in}} \), which makes sense. Then using Eq. (6.35),

\[V_{\text{out}} = -\eta A V_{\text{out}} - (1 - \eta)A V_{\text{in}}. \]

(6.61)

Solving for \(V_{\text{out}} \),

\[V_{\text{out}} = -\frac{(1 - \eta)A}{(1 + \eta A)} V_{\text{in}}. \]

(6.62)

This is the result we wanted, with \(G \) the coefficient of \(V_{\text{in}} \).

(b) As \(A \to \infty \), \(G = -(1 - \eta)A/(1 + \eta A) \to -(1 - \eta)/\eta = -R_2/R_1 \).

(c) Suppose a current \(I \) flows into the \(V_{\text{in}} \) terminal. Then

\[I = \frac{V_{\text{in}} - V_{\text{in}}^-}{R_1} = \frac{V_{\text{in}} - \eta V_{\text{out}} - (1 - \eta)V_{\text{in}}}{R_1} = \frac{\eta V_{\text{in}} - V_{\text{out}}}{R_1} = \frac{\eta[(1 + \eta A) + (1 - \eta)A]}{(1 + \eta A)R_1} V_{\text{in}} = \frac{\eta(1 + A)}{(1 + \eta A)R_1} V_{\text{in}}, \]

(6.63)

where we used the solution (6.62). Then \(Z_{\text{in}} = V_{\text{in}}/I \), so

\[Z_{\text{in}} = \frac{(1 + \eta A)R_1}{\eta(1 + A)} = \frac{R_1}{\eta(1 + A)} + \frac{AR_1}{(1 + A)} = \frac{R_1 + R_2}{(1 + A)} + \frac{AR_1}{(1 + A)} = \frac{R_2}{(1 + A)} + R_1. \]

(6.64)
Note that this reduces to \(R_1 \) as \(A \rightarrow \infty \).

(d) Here, we set \(V_{in} = 0 \) and call the output \(V \), with a current \(I \) going into the output terminal. \(V_{out} \) is the output voltage of the ideal op-amp, before the intrinsic resistor \(R_o \), as in the noninverting case. Then \(V_{in-} = \eta V \), and

\[
V_{out} = A(V_{in+} - V_{in-}) = -AV_{in-} = -\eta AV. \tag{6.65}
\]

So the current is

\[
I = \frac{V - V_{out}}{R_o} = \frac{1 + \eta A}{R_o} V, \tag{6.66}
\]

and so the output impedance \(Z_{out} = V/I \) is

\[
Z_{out} = \frac{R_o}{1 + \eta A}. \tag{6.67}
\]

Note that this decreases to zero as \(A \rightarrow \infty \).

6.8 Bandwidth

The **bandwidth** of an amplifier refers to the frequency range over which the response (gain) is reasonably flat. For electronic amplifiers, one characteristic is that the gain must fall off above some frequency—no amplifier can work at arbitrarily high frequencies.

Recall that the closed-loop gain \(G \) and the open-loop gain \(A \) are related, in that the latter bounds the former:

\[
G \leq A. \tag{6.68}
\]

Now let’s consider the frequency dependence of the gain. In particular, the open-loop gain \(A(\omega) \) typically has a “one-pole response,” like that of a low-pass filter:

\[
A(\omega) = \frac{A_0}{\sqrt{1 + (\omega/\omega_{3dB})^2}}. \tag{6.69}
\]

Here, the cutoff frequency \(\omega_{3dB} = 1/RC \) for a low-pass filter, where \(R \) and \(C \) are typically set by intrinsic transistor resistance and stray or added (internal) capacitance in the-op-amp. Note that asymptotically,

\[
A(\omega) \sim \frac{1}{\omega} \tag{6.70}
\]

for large \(\omega \), for a scaling of \(-6\) dB/octave.

Then the closed-loop gain is bounded by the open-loop gain, so that as the open-loop gain falls off, so does the closed-loop gain. This is illustrated schematically below for two different dc gains \(G \) and an open-loop gain \(A(\omega) \).
Note that as the dc gain becomes smaller, the bandwidth (frequency range over which the gain is roughly constant) becomes wider. Since A cuts off as ω^{-1}, the closed-loop gain $G(\omega)$ meets $A(\omega)$ at a frequency that scales in the same way as ω^{-1}. That is, the bandwidth scales as $1/G_0$, where G_0 is the dc gain. Said differently, the product of the dc gain G_0 and the bandwidth is a constant, and this is often quoted as the gain–bandwidth product (GBWP), or the unity-gain bandwidth. For example, the 741C has a GBWP of 1.5 MHz. Generally speaking, op-amps tend to be slow, especially at high gains, compared to discrete transistors.

6.8.1 Slew Rate

A concept closely related to bandwidth is the **slew rate**, which is the maximum rate of change of the output. Intuitively, this should be proportional to the GBWP, but this is somewhat more complicated because the same signal, but with different amplitudes, would involve different slew rates, even if they have the same frequency spectrum. So for rapidly changing signals, an op-amp with a particular slew rate may be able to follow the signal at low amplitudes, but it may be harder for the op-amp to follow the same signal at larger amplitudes.

As a concrete example, the 741C has a modest slew rate of 0.5 V/µs. Slew rates can be much high; for example, the BUF634 unity-gain buffer has a slew rate of 2000 V/µs.

Generally speaking, the speed of an op-amp (either in terms of slew rate or GBWP) is controlled by the internal capacitance, which is usually fixed by an internal compensation capacitor, but also by intrinsic emitter resistance. Recalling that $r_e \propto 1/I_c$, generally speaking, a larger quiescent current (idling current) for an op-amp gives a higher slew rate or a wider GBWP. There is thus a trade-off between power and speed—some op-amps, like the OPA602, have a programmable quiescent current so the user can choose exactly where to make this trade-off.

6.8.1.1 Slew Rate and Power-Boosted Op-Amps

There are certain circuits where the slew rate of an op-amp is critical to its performance. One example is a “power-boosted” op-amp, where transistors are used to boost the output current capacity of an op-amp. The motivation for this circuit comes from the following “push-pull” current amplifier.

![Push-Pull Current Amplifier Diagram](image)

This is basically a pair of emitter followers. The potential advantage is operation with input signals of either polarity. The problem, though, is that one of the transistors will conduct, and the emitter (output) voltage must be a diode drop closer to zero than the base (input) voltage. That is, a graph of the output voltage responding to input voltage is schematically as in the graph below, if we assume the simple model that the base-emitter voltage drop is a constant 0.6 V (or less).
Chapter 6. Operational Amplifiers

The problem in using this as an amplifier is that it leads to **crossover distortion**, because the base-emitter drop changes as the signal crosses through zero. An example is shown in the graph below of crossover distortion of an input sine wave.

One nice solution, at least in principle, is to use an op-amp, and enclose the push-pull transistor pair in the feedback loop of the op-amp, as in the circuit below.

This circuit acts as a unity-gain buffer with high current-driving capacity, because the op-amp does whatever it needs to do to ensure that V_{out} is the same as V_{in}. And to do this, it must “undo” the crossover distortion, so the base voltage V_B in this circuit must respond to the input as in the graph below.

This response combined with the crossover distortion results in, in principle, a distortion-free output.

However, the problem with this conclusion is that it assumes that the op-amp has a long time to settle to the “correct” value. But with a rapidly changing input signal, the op-amp must jump discontinuously by
1.2V when the input signal crosses through zero, which in practice can be problematic. This can lead to larger distortion and “glitching” with faster input signals.

A solution to this problem is to “bias” the transistors into conduction: basically, add 0.6V to V_{B} at the npn’s base, and $-0.6V$ to V_{B} at the pnp’s base. Then with a 0-V input, both transistors are slightly conducting, but in opposition so their currents cancel. This wastes a bit of power at idle, but largely removes the problem with crossover distortion. The uncorrected amplifier is called a class-B amplifier, while the bias-corrected amplifier is called a class-AB amplifier.

Practically, it is complicated to design a bias-corrected circuit, especially to avoid thermal problems and proper selection and matching of bias voltages. For physicists, a simpler solution is to use a high-current buffer amplifier, where engineers have already taken care of the effort of biasing the push-pull pair. One example is the circuit below, which can handle 250-mA output signals via a BUF634 unity-gain buffer.

![Precision op-amp circuit](image)

The idea is to use a precision op-amp, and take the feedback from the output of the BUF634. This way, we get the high-current capacity of the “slave” BUF634, combined with the precision of the “master” op-amp. One caveat, which we will explore in more depth, is that the buffer amplifier must have a much wider bandwidth than the master op-amp.

6.8.1.2 Stability and Compensation

So far, we have talked about the frequency-dependent gain, but the frequency-dependent phase is also critical. As we have noted, for most purposes we can regard an op-amp as having a gain behavior similar to a low-pass filter.

Recall that for an RC filter, the relative phase of the output is 0° in the limit $\omega \rightarrow 0$, and changes to a 90° phase lag as $\omega \rightarrow \infty$. If we have multiple, cascaded filters, at high frequencies, intuitively we can think of having a 90° phase per “pole”, or roughly speaking, per RC pair. This can pose a problem for op-amp circuits that require negative feedback. Due to phase shifts and time delays in the feedback loop at high frequencies can add up to a 180°. However, negative feedback in combination with a phase shift of 180° (or in fact anything between 90° and 270°) is in fact positive feedback. This can turn into unstable behavior (oscillation) if the gain of the circuit exceeds unity in the frequency range where the feedback becomes positive feedback.

Thus comes the idea of compensation. Most op-amps include an internal capacitor to “roll off” the gain, and in particular to ensure that the gain is less than unity at frequencies where large phase shifts may cause problems. There are also uncompensated op-amps, which need an external capacitor or an appropriate reactive load to achieve stability. An example is the inverting amplifier below, with an explicit compensation capacitor to cut off the gain at high frequencies.
Another example is a variation on the BUF634 buffered op-amp circuit from the previous section. If the slave buffer amplifier is slower than the master op-amp, this may cause a problem because the phase shift due to the slower buffer may cause the master to become unstable or oscillate. A solution to use a slow buffer is the circuit below.

For small frequencies ($\omega \ll \omega_{3dB} = 1/RC$), the feedback comes from the buffer output, while at high frequencies ($\omega \gg \omega_{3dB} = 1/RC$), the feedback comes from the output of the master op-amp. This arrangement avoids problems with the phase shift and maintains stability of the amplifier.

6.9 Comparators

Recall that op-amps are basically high-gain differential amplifiers.

$$V_{out} = A(V_{in+} - V_{in-})$$

We have mostly concentrated on closed-loop operation (feedback from output to the inverting input), which forces the inputs to have basically the same voltage. In open-loop operation (no feedback), the inputs are not the same, and if they are different by even a small amount (~mV), the output rails one way or the other to reflect the difference. This open-loop operation is useful in some contexts, and op-amps that are specifically designed for this purpose are called **comparators**.

Specialized comparators (vs. using regular op-amps in the same role) have some advantages. For example, stability is not a concern, because comparators are not generally used with negative feedback. Thus, they need no compensation, and are instead optimized for very high slew rates. In fact, a common configuration for a comparator is the **open-collector output**. The common LM311 comparator, with open-collector output, is shown below, connected as in typical usage.
Comparators

The usual output of the op-amp in the LM311 drives the base of an output transistor, whose collector is connected to the output. If $V_{in} > 0$, then the transistor acts as an open circuit, causing the output to go high to $+5 \text{ V}$ via the $1 \text{k}\Omega$ pull-up resistor. If $V_{in} < 0$, the transistor acts as a short, causing the output to fall to zero.

Comparators are useful in interfacing analog signals to digital circuits, which only recognize two states (HIGH voltage and LOW voltage). The comparator simply compares the analog signal to some reference voltage, and “tells” the digital circuit whether the analog signal is above or below the reference, but using the correct digital voltages. The states of 0 and $+5 \text{ V}$ as in the LM311 example above are appropriate for TTL logic, for example. More complex interfaces are certainly possible, and we will return to this later when we discuss analog-to-digital conversion.

Beyond digital interfacing and analog-to-digital conversion, other applications of comparators include oscillators and drivers for alarms or indicators (LEDs, buzzers, beepers) based on an input sensor (e.g., for temperature or water level).

6.9.1 Schmitt Trigger

One problem with comparators arises with noisy input signals. Consider the noisy input voltage below going into a comparator with the reference voltage shown. What we want from the comparator is a signal that reflects when the input signal goes above or below the reference. The corresponding output is shown in the lower graph.

But what we see is that due to the noise, the output signal makes many (spurious) transitions whenever the signal crosses a reference, whereas we would expect a smooth input signal to make only one transition at each crossing.

A solution to this is positive feedback, which introduces hysteresis. The circuit below, based on the LM311, uses feedback to the noninverting input.
Again, the output swings between 0 V and 5 V, depending on the inputs. Now look at the two cases.

1. If V_{in} is low, then V_{out} is high (+5 V), and the trigger point is about 50 mV.

2. If V_{in} is high, then V_{out} is low (0 V), and the trigger point is 0 mV.

The trigger point depends on the output, and thus to the input; in other words, V_{in} “repels” the trigger point, and this gives the circuit immunity to noise at the level of about 50 mV or less. The schematic operation of the Schmitt trigger, from introducing the two effective trigger points, is shown below on the same signal. The hysteresis suppresses the spurious transitions. (Note that the output is inverted compared to the discussion of the LM311 circuit, so it compares more closely to the comparator output in the previous graphs.)

Of course, other nominal trigger levels besides 0 V are possible, by replacing the 1-kΩ resistor with a voltage divider. The Thévenin resistance of the divider acts in place of the 1-kΩ resistor.

6.10 Positive Feedback and Oscillator Circuits

Besides the Schmitt trigger, positive feedback is useful in op-amp oscillators. We will study two examples of positive-feedback oscillators here: a relaxation oscillator and a phase-shift oscillator.

6.10.1 Relaxation Oscillator

One good example of a positive-feedback oscillator is the relaxation oscillator, shown below.
Here, the amplifier is standard op-amp, acting as a comparator in open-loop mode. We will assume the output rails are $+V_{\text{max}}$ and $-V_{\text{max}}$. There is a 50% voltage divider feeding the noninverting input, similar to the Schmitt trigger above. This sets the trigger points of the comparator to $+V_{\text{max}}/2$ and $-V_{\text{max}}/2$.

Now consider the output of the oscillator at the two points V_1 and V_2, shown below.

If the output V_1 is positive, the RC circuit charges V_2 until the inverting-input voltage exceeds the $V_{\text{max}}^+/2$ trigger point, at which point V_1 goes negative, and the charging proceeds in the opposite direction until V_2 reaches $V_{\text{max}}^-/2$, and the cycle repeats.

To treat this more quantitatively, the interval between the switching times is the time from RC decay of V_2 from $+V_{\text{max}}/2$ to $-V_{\text{max}}/2$. The process is (RC) exponential decay starting from $+V_{\text{max}}/2$ to $-V_{\text{max}}$, so we are waiting for the decay to 1/3 of the initial voltage, thinking of $-V_{\text{max}}$ as “ground.” That is, if Δt is the time interval, then

$$e^{-\Delta t/RC} = \frac{1}{3},$$

so

$$\Delta t = RC \log 3 \approx 1.1 \, RC.$$ \hfill (6.72)

The period T is $2\Delta t$, so we have

$$T = RC \log 9 \approx 2.2 \, RC$$

(6.73) (relaxation-oscillator period)

for the period of the relaxation oscillator. The output can be either a quasi-triangle wave or a square wave, depending on which point serves as the output.

6.10.2 Buffered Phase-Shift Oscillator

Another example of an oscillator is shown below. It produces a sine wave at a frequency determined by the RC low-pass filters. The buffers are op-amps connected as unity-gain followers.
Note that the first op-amp is connected as an inverting amplifier, and the output V_{out} feeds back into the inverting amplifier. There are 3 RC filters in the feedback loop. The oscillation condition is that the phase shift of each RC filter is 60°, so the total RC phase shift is 180°. In combination with the action of the inverting amplifier, this is a total phase of 0°, which means that we have positive feedback.

The correct phase shift only happens at one frequency, which we can find by setting the low-pass-filter phase [Eq. (2.61)]

$$\phi = - \tan^{-1}(\omega RC)$$

(6.74)

to $\phi = 60^\circ$. The solution is the angular frequency

$$\omega = \frac{\tan 60^\circ}{RC} = \frac{\sqrt{3}}{RC} \approx 1.732.$$

(6.75)

This corresponds to a frequency $f = \omega / 2\pi$, or

$$f = \frac{\sqrt{3}}{2\pi RC} \approx 0.276.$$

(6.76)

For example, if $R = 10 \text{k}\Omega$ and $C = 0.01 \mu\text{F}$, then $f = 2.76 \text{kHz}$.

Recall that the low-pass amplitude transfer function is [Eq. (2.45)]

$$T(\omega) = \frac{1}{\sqrt{1 + (\omega RC)^2}}.$$

(6.77)

At the oscillation frequency, $\omega RC = \sqrt{3}$, $T(\omega) = 1/2$, so the transfer of 3 RC sections is $1/8$. Thus, to ensure oscillation, we should set $R_2/R_1 = 8$ or a bit higher.
6.11 Circuit Practice

6.11.1 Analog Computers

6.11.1.1 Proportional–Integral Amplifier

As an introduction to the next problem, compute the output voltage in the op-amp circuit below. (It should be proportional to the sum of the integral of the input signal and the input signal itself.) For simplicity, assume $V_{out}(0) = V_{in}(0) = 0$.

Solution. Using the inverting-amplifier result,

$$V_{out} = -\frac{R_f + X_C}{R} V_{in} = -\frac{R_f}{R} V_{in} - \frac{i}{\omega RC} V_{in}. \quad (6.78)$$

Multiplying through by $-i\omega$,

$$-i\omega V_{out} = -\frac{R_f}{R} V_{in} - \frac{1}{RC} V_{in}, \quad (6.79)$$

and then changing to derivatives,

$$\frac{dV_{out}}{dt} = -\frac{R_f}{R} \frac{dV_{in}}{dt} - \frac{1}{RC} V_{in}. \quad (6.80)$$

Integrating,

$$V_{out}(t) = -\frac{R_f}{R} V_{in}(t) - \frac{1}{RC} \int_0^t V_{in}(t') dt'. \quad (6.81)$$

6.11.1.2 Damped Harmonic Oscillator

The circuit below is an example of an analog computer, in this case a computer that solves a differential equation. In particular, show that this circuit solves the damped-harmonic-oscillator equation,

$$\ddot{x} = -\gamma \dot{x} - \omega_0^2 x. \quad (6.82)$$

Give expressions for the parameters γ and ω_0 in terms of the R and C values.

$$\begin{align*}
\text{Hint: think of the input to IC1 as } & x(t), \text{ and start integrating from there.} \\
\text{Actually, this circuit only solves for } & \ddot{x}(t), \text{ while } x(t) \text{ is buried in an inaccessible way in IC2. Can you think of a way to modify the circuit, by replacing IC2 with two other op amps, to make } x(t) \text{ available?}
\end{align*}$$
Note also in particular how R_3 controls the damping (γ) for the circuit.

Solution. Suppose the input to the IC1 integrator is \ddot{x}. Then the output of IC1 (and the input of IC2) is

$$V_{IC1} = -\frac{\dot{x}}{R_1C_1}. \quad (6.83)$$

Now applying the results of the first problem, the output of IC2 is

$$V_{IC2} = \frac{R_3}{R_1R_2C_1} \dot{x} + \frac{x}{R_1R_2C_1C_2}. \quad (6.84)$$

The last op amp just inverts with some gain:

$$V_{IC3} = V_{out} = -\frac{R_3R_5}{R_1R_2R_4C_1} \ddot{x} - \frac{R_5}{R_1R_2R_4C_1C_2} x. \quad (6.85)$$

Then $V_{out} = \ddot{x}$, so we have the equation

$$\ddot{x} = -\frac{R_3R_5}{R_1R_2R_4C_1} \dot{x} - \frac{R_5}{R_1R_2R_4C_1C_2} x. \quad (6.86)$$

This is the harmonic-oscillator equation with

$$\gamma = \frac{R_3R_5}{R_1R_2R_4C_1}, \quad \omega_0 = \sqrt{\frac{R_5}{R_1R_2R_4C_1C_2}}. \quad (6.87)$$

Note that we set V_{out} to \ddot{x}, so this solves for the second derivative. To make $x(t)$ available, replace IC2 by two op amps, one an integrator and one an inverting amplifier. Then use IC3 as an inverting summer. The $x(t)$ signal is then available on the output of the inverting amplifier.

6.11.2 Gyrator

The circuit below is an example of a **gyrator**\(^1\), which presents an effective impedance based on the constituent impedances Z_1–Z_5 (which are not necessarily resistors).

(a) Show that the effective input impedance is as advertised. Begin by considering a voltage V and a current I at the input terminal, and divide them to obtain the impedance.

Hints: to get you started, here are a few things to simplify and keep things organized. First, consider currents I_1–I_5, flowing through “resistors” Z_1–Z_5, all in the direction of the ground connection.

Second, assume that both op amps are operating “normally” with negative feedback (this is plausible in this circuit, since the outputs are “closer” in the impedance chain to the negative inputs than to the negative outputs, but strictly speaking this would need to be proven; for simplicity, just assume this is the case).

Third, note that $V = I_5 Z_5$. (Why?)

Finally, use what you know about op amps to relate all the different currents together; you don’t need to consider any other currents besides I and I_1–I_5, and obviously you want to eliminate all of them but I.

(b) One of the utilities of this circuit is to realize an effective inductor using only op amps, resistors, and capacitors. This is useful since these components are often better behaved (i.e., closer to ideal) than inductors. Suppose Z_4 is a capacitor in this circuit, with the rest resistors. Show that the result is an effective inductor, and give the effective inductance. What set of (reasonable) components would give you a 1-H inductor? (A pretty big inductor!)

Solution.

(a) We start with

\[V = I_5 Z_5. \] (6.88)

This is because the voltage drop across the other four resistors must be zero, because they are wrapped between the inputs of the op amps.

Now the voltage between the inputs of the right-hand op amp is zero, so

\[I_3 Z_3 = -I_4 Z_4. \] (6.89)
Then using \(I_4 = I_5 \) (no current into the op-amp input), we find

\[V = I_4 Z_5 = -\frac{Z_3 Z_5}{Z_4} I_3. \quad (6.90) \]

Repeating this argument, we have

\[I_1 Z_1 = -I_2 Z_2 \quad (6.91) \]

and \(I_2 = I_3 \), so

\[V = -\frac{Z_3 Z_5}{Z_4} I_2 = \frac{Z_3 Z_5}{Z_2 Z_4} I_1. \quad (6.92) \]

Finally, \(I_1 = I \), so

\[V = \frac{Z_1 Z_3 Z_5}{Z_2 Z_4} I =: I Z_{\text{eff}}, \quad (6.93) \]

which establishes the effective impedance.

(b) With

\[Z_{\text{eff}} = \frac{Z_1 Z_3 Z_5}{Z_2 Z_4} \quad (6.94) \]

and setting \(Z_4 = i/\omega C \) and the other impedances to resistances,

\[Z_{\text{eff}} = -i\omega \frac{R_1 R_3 R_5 C}{R_2}. \quad (6.95) \]

Comparing this to

\[X_L = -i\omega L, \quad (6.96) \]

we have an inductance

\[L_{\text{eff}} = \frac{R_1 R_3 R_5 C}{R_2}. \quad (6.97) \]

With \(C = 0.01 \, \mu\text{F} \), we could pick all resistors to be 10 k\(\Omega \), which would give 1 H of inductance.

6.11.3 Guitar Preamp with Midrange Boost/Cut

The circuit on the next page is a preamplifier for an electric guitar, powered from a single 9-V battery. It is designed for a Fender Stratocaster, and uses one of the “tone knobs” to control a midrange boost or cut (a midrange boost gives a “fat” sound more like a Les Paul guitar, with “humbucking pickups;” a midrange cut gives a clear, “thin” sound, more like the neck pickup on a Fender Telecaster guitar). The PCB design is also shown, printed at actual size. (Compare this circuit to the preamplifier for the Eric Clapton Signature Stratocaster from Section 4.12.4.)

Try to work through the circuit and understand each of the elements, noting the following:

- Since this circuit is powered by a single 9-V battery, but the signal is bipolar, all circuits must be referenced to the “effective ground” of 4.5 V. For example, the input is ac-coupled and biased at this effective ground.

- There are four op-amps, but all packaged in one chip. Hence the “1/4 OP462,” and the IC pin numbers on each op-amp.

- First, convince yourself that the input op-amp (pins 1-3) is an ac-coupled, unity-gain buffer.

- Now, the upper-left op-amp (pins 5-7) functions as a noninverting amplifier. But the capacitor gives a frequency-dependent gain. You should convince yourself that the dc gain is unity, but the ac gain is higher. What is the ac gain? Why do we want unity gain at dc?
• The upper-right-hand op-amp is less obvious, but this is an inverting bandpass filter, as suggested by the center frequency and \(Q \) factor. Note that the noninverting input is biased at virtual ground (normally this input would just be grounded), and that there are two R–C pairs at the input (R7 in parallel with R8 and R9, with C4; and R12 with C5) that together give the bandpass action, because they act something like cascaded low-pass and high-pass filters. (See Problem 14.)

• The final op-amp (pins 12-14) combines the filtered signal with the original to give the boost or cut. Capacitor C2 rolls off the gain at high frequencies, where the combination may not be accurate due to different delays at the inputs.

• To control the amount of boost or cut, a potentiometer (with color-coded wires according to the standard Fender convention for the tone knob) interpolates between the buffered input signal and the inverted version produced by the last op-amp.

• The output is ac-coupled and biased to ground.

• Note the diode in the battery/power-supply connection, which protects the op-amp in case the battery is accidentally connected in reverse. A single bypass capacitor stabilizes all op-amps, since they are in a single package. The op-amp operates at low power, so the bypass capacitor value and location are not critical; a larger capacitance is fine since the capacitor does not need to work well at very high frequencies (audio = low frequency in circuits).
Chapter 6. Operational Amplifiers

GUITAR PREAMP/MID-BOOST CIRCUIT

D. A. STICK
4/8/00

¢ 20 dB
¢ 20 dB
¢ Cut
¢ Boost

Center Frequency = 444 Hz
Mid-Band Gain = -2.3
Q = 1.14

+9V

R1
2.2 MΩ
INPUT
-
+
1/4 OP462
3
2
1
-
+
R2
2.2 MΩ
C1
0.1 µF
1/4 OP462
R14
1.0 MΩ
C6
0.1 µF

+9V

20 dB
Cut
20 dB
Boost

Center Frequency = 444 Hz
Mid-Band Gain = -2.3
Q = 1.14

+9V

R1
2.2 MΩ
INPUT
-
+
1/4 OP462
3
2
1
-
+
R2
2.2 MΩ
C1
0.1 µF
1/4 OP462
R14
1.0 MΩ
C6
0.1 µF

+9V

20 dB
Cut
20 dB
Boost

Center Frequency = 444 Hz
Mid-Band Gain = -2.3
Q = 1.14

+9V

R1
2.2 MΩ
INPUT
-
+
1/4 OP462
3
2
1
-
+
R2
2.2 MΩ
C1
0.1 µF
1/4 OP462
R14
1.0 MΩ
C6
0.1 µF

+9V

20 dB
Cut
20 dB
Boost

Center Frequency = 444 Hz
Mid-Band Gain = -2.3
Q = 1.14

+9V
6.11.4 Active Rectifiers

Below are two active rectifiers; that is, ideally, they realize the function

\[V_{\text{out}} = \begin{cases} V_{\text{in}}, & V_{\text{in}} \geq 0 \\ 0, & \text{otherwise} \end{cases} \]

(6.98)

The first one is a “simple” rectifier,

and the second one is the “better” rectifier.²

Note that the second circuit takes the inverted signal \(-V_{\text{in}}\) instead of \(V_{\text{in}}\), which could be implemented by another inverting amplifier that is not shown.

The questions are:

1. Why are these active rectifiers? (Note that unlike simple diodes, these circuits really make a transition at \(V_{\text{in}} = 0\), rather than at one forward diode-drop above ground.)

2. Why is the “better” circuit better? (Hint: it has to do with the slew rate; what is the state of the op-amps when \(V_{\text{in}} < 0\)?)

Solution. Tracing through the simple rectifier: Note that if \(V_{\text{in}} \geq 0\), then the output of the op-amp can maintain the inverting-input voltage \(V_{\text{in}}^- = V_{\text{in}}\) by keeping its output at one forward diode drop above \(V_{\text{in}}\). However, if \(V_{\text{in}} < 0\), then the op-amp can’t pull \(V_{\text{in}}^-\) negative through the diode, so the op-amp rails negative. The output is taken from \(V_{\text{in}}^-\), so the forward diode-drop doesn’t matter for calculating \(V_{\text{out}}\).

Tracing through the better rectifier: If \(-V_{\text{in}} \leq 0\) (i.e., \(V_{\text{in}} \geq 0\), then the output of the op-amp can maintain the inverting-input voltage \(V_{\text{in}}^- = 0\) by pulling its output one diode drop above \(V_{\text{in}}\) and conducting via the upper diode, and the op-amp acts like an inverting amplifier. Again, the diode drop doesn’t matter since the output is buffered at the correct point. For \(-V_{\text{in}} \geq 0\) (i.e., \(V_{\text{in}} \leq 0\), the lower diode conducts instead, and the upper diode disconnects—this means that \(V_{\text{out}} = 0\) because the output buffer sees the virtual ground at the inverting input to the op-amp. The output of the op-amp is one forward diode-drop below ground.

The difference in these circuits is in the crossing through zero, because in the former case, the op-amp output swings from the negative rail to +0.7 V. In the latter case, the op-amp only swings from −0.7 V to +0.7 V, which reduces the tendency of the op-amp to glitch when fast input signals have zero-crossings.

6.11.5 Pulse-Area Stabilizer

The circuit on the next page is designed for the following purpose. To take photographs with a laser pulse, it is desirable to have the same exposure from each pulse. But the intensity of the laser drifts. Rather than try to stabilize the intensity of the laser, we can compensate for the drift by changing the duration of each laser pulse to compensate. By making the pulse area or integrated energy of each pulse the same, the photographs have exactly the same exposure, independent of the laser intensity.

Try to trace through the following features in the circuit.

1. The reference IC6 provides a stable voltage to bias the photodiode. What is the voltage at pin 2?

2. You should then convince yourself that the photodiode PD1 is reverse-biased. This helps to improve the speed of the photodiode. The photodiode itself acts as a current source, with current flowing from cathode to anode.

3. What kind of op-amp circuit is IC1? How is the output related to the photodiode signal? (Answer: the op-amp output is positive and proportional to the photocurrent.)

4. IC2 is an integrator, with a MOSFET to reset the integrating capacitor.

5. IC3 is a comparator, connected as a Schmitt trigger. It detects when the integral of the laser pulse intensity reaches a set value from input jack J3. Its output drives digital logic circuitry, to which we will return later after we have studied digital electronics.
Chapter 6. Operational Amplifiers

6.12 Exercises

Problem 6.1

Consider the following op-amp circuit, which contains one resistor (of resistance R), and one schmesistor.

![Op-amp circuit diagram]

Recall (Problem 9) that a “schmesistor” is a device that obeys “Schmohm’s law,”

$$V = I^2S,$$ \hspace{1cm} (6.99)

where S is the “schmesistance.” Derive an expression for V_{out} in terms of V_{in}, R, and S.

Problem 6.2

(a) Consider the following op-amp circuit, which contains one resistor (of resistance R), and one schmapacitor (see Problem 7) of schmapacitance S.

![Op-amp circuit diagram]

Derive an expression for $V_{out}(t)$ in terms of an arbitrary, time-dependent input $V_{in}(t)$, R, and S. Assume an ideal op-amp.

Recall that the schmapacitor is defined by the relation

$$I = S \frac{d^3V}{dt^3},$$ \hspace{1cm} (6.100)

where I is the schmapacitor current and V is the voltage drop across the schmapacitor.

(b) Of course, schmapacitors aren’t real. Describe briefly and qualitatively how you could build an equivalent circuit using real-world components.

Problem 6.3

(a) A photodiode produces a backwards current (i.e., current flows from cathode to anode) when detecting light. (Think of this as the opposite of an LED, where a forward current causes light to be emitted. In fact, an LED can work as a photodiode, though not a particularly great one.) Consider the photodiode-amplifier (op-amp) circuit below, which acts as a transimpedance amplifier (current input, voltage output). Write down an expression for the output voltage in terms of the photodiode current and R. Is the output voltage positive or negative when you shine light on the photodiode?
(b) The Hamamatsu S1223 is a standard, medium-area (2.4 mm × 2.8 mm), general-purpose, silicon PIN photodiode. The sensitivity is specified at 0.52 A/W. Assuming the photodiode collects all the power from a steady, 1-µW laser beam, and the resistor is \(R = 10 \, \text{kΩ} \), what is the output voltage?

(c) For a very sensitive circuit (i.e., to register small input powers, of the order of nW), it may be necessary to use a very large resistor. But also recall that op-amps aren’t always happy with feedback resistances much over 1 MΩ, and very large resistors may be difficult to source. There is a nice trick to get around this, however. Consider the modified transimpedance amplifier below, with a “T network” in the feedback loop.

What is the effective feedback resistance \(R \) of this circuit (i.e., the resistance that makes this equivalent to the original circuit)? Find a combination of 100 kΩ or smaller resistors that gives an effective \(R \) of 1 GΩ.

Problem 6.4

Consider the (op-amp) differential-amplifier circuit shown below. Recall that for this to behave as a good differential amplifier (i.e., for perfect common-mode rejection), the two \(R_1-R_2 \) resistor pairs must be matched perfectly (in terms of ratio), assuming ideal op-amp behavior.
Of course, real resistors aren’t perfectly matched. As a model for this, suppose that the feedback resistor has a resistance $R_2 + \delta R$, where δR is a small perturbation to this resistance.

(a) Rederive an expression for V_{out} in terms of the input voltages and resistances. Keep only first-order terms in δR.

(b) Write down an expression for the CMRR. Consider a unity-gain amplifier with $R_1 = R_2 = 10 \, k\Omega$. Give a numerical estimate (in dB) for the expected CMRR if you use 1% resistors. Repeat for 0.01% resistors.

Problem 6.5

Show that the op-amp circuit below behaves approximately as a **logarithmic amplifier**. Under what conditions does this circuit really function logarithmically?

![Logarithmic Amplifier Diagram]

Hint: the function of the transistor, as in the inverting amplifier, is to convert a current into a voltage, so use an appropriate relation to describe the transistor.

Problem 6.6

For the circuit below, the **Howland current source**, show, provided $R_4/R_1 = R_3/R_2$, that $I = -V_{in}/R_2$.

![Howland Current Source Diagram]

Assume an ideal op-amp.

Problem 6.7

Consider the circuit below.\(^3\) Show that for this circuit, $V_{out} = |V_{in}|$.

This circuit looks a little complicated, so here is some guidance. Note that you should be able to do this with very little math, provided you break the circuit down into manageable parts that you have already learned about.

(a) The IC2 op amp is connected in one of the basic op-amp circuits; what is it?

(b) Now the tricky part is understanding the diode network in the IC1 circuit. Begin by treating D1 and D2 as ideal diodes (i.e., no forward voltage drop). Now you should see that only one diode conducts at a time, and in either case IC1 is connected as one of the basic op-amp circuits (which one?). Work out the voltages V_1, V_2, and V_3, and handle separately the cases where the output of IC1 is positive or negative.

(c) Finally, consider the original circuit with real diodes, and argue that the forward voltage drops don’t matter.

Problem 6.8

The circuit below is a negative-impedance converter, composed of an op-amp (you may assume the golden rules apply here), two identical resistors of resistance R, and a generic circuit element of impedance Z (could be a resistor, capacitor, etc.). What is the impedance Z_{in} at the input terminal?

Problem 6.9

The amplifier below is a multiplying amplifier, with the output voltage proportional to the product of the input voltages.
Using this multiplier, design a circuit that behaves as a square-root amplifier (i.e., with $V_{out} \propto \sqrt{V_{in}}$). Use whatever circuit elements you like that we have studied in class (op amps, resistors, capacitors, diodes, wires, etc.). Show that your circuit behaves as advertised.

Problem 6.10

An op-amp unity-gain buffer is shown below.

Compute the closed-loop gain of this circuit, assuming a finite, open-loop gain A.

Problem 6.11

Consider the transimpedance amplifier below. The op amp has finite open-loop gain A.

(a) Derive an expression for V_{out} in terms of the input current I. Also take the limit as $A \to \infty$.
(b) Derive an expression for the input impedance of the circuit. Ignore any intrinsic input impedance R_i of the op-amp inputs.
(c) Derive an expression for the output impedance of the circuit.

Problem 6.12

Derive an expression for V_{out} in the circuit below, in the regime where the output is not railed (assume that R is of the order of 10kΩ). Also, you may assume $V_{in} \geq 0$ (but assume V_{in} is not so large that it damages the transistor) and an ideal op amp. Finally, the op amp is powered from $\pm V_{CC}$. Be clear about any assumptions you make.
Problem 6.13

In the circuit below, derive an expression for V_{out}, assuming an ideal op amp.

Problem 6.14

Consider the following circuit, an active, inverting, band-pass filter. (This is the bandpass filter from the guitar preamplifier in Section 6.11.3.)

(a) Derive an expression for the gain function $G(\omega)$, and the amplitude gain function $G(\omega)$. Note that these are the same as the transfer function and amplitude transfer function, respectively, in the passive-filter case.

Note: an algebra program like Mathematica will make this problem considerably simpler. Contact me if you need help with learning how to use it for algebra or making plots.

(b) Derive asymptotic expressions for $G(\omega)$ for large and small frequencies. From these expressions, argue that this is a band-pass filter.
(c) Find an expression for the center frequency, where $G(\omega)$ is maximum. Give a numerical value for this frequency (give the frequency in Hz, not rad/s), for the component values $R_1 = 35.7 \, \text{k}\Omega$, $R_2 = 28 \, \text{k}\Omega$, $R_3 = 82 \, \text{k}\Omega$, $C_1 = C_2 = 0.01 \, \mu\text{F}$.

(d) Find an expression for the peak gain, i.e., the value of $G(\omega)$ at the frequency you derived in part (c). Again, give a numerical value for the same component values.

(e) Make a log-log plot of $G(\omega)$, over a reasonable range of frequencies, for the component values above. (Keep in mind this is intended as an audio band-pass filter.)

Problem 6.15

Consider the circuit below, which is intended as a voltage-controlled current source.\(^4\) Assume the “output voltage” V_{out} is held to a fixed voltage by an external source.

\(\begin{array}{c}
\text{Vin} \\
\text{2kΩ} \\
\text{1μF} \\
\text{1kΩ} \\
\text{IC2} \\
\text{1kΩ} \\
\text{1kΩ} \\
\text{IC1} \\
\text{1kΩ} \\
\text{1kΩ} \\
\text{1kΩ} \\
\text{I_{out}} \\
\end{array}\)

(a) First, start by identifying the basic op-amp circuits for IC1 and IC2 (i.e., these are two standard op-amp circuits, connected via a network that includes three resistors). For IC2, first think about the circuit at dc (i.e., ignoring the capacitor).

(b) Show that $I_{\text{out}} = \frac{\text{Vin}}{(1 \, \text{k}\Omega)}$, and is independent of V_{out}, for dc inputs. (You may find it useful to label the output voltages of IC1 and IC2 as V_1 and V_2, respectively.)

(c) Show that if Vin is disconnected (i.e., not held at any particular voltage), that $I_{\text{out}} = 0$, independent of V_{out} (for dc inputs).

(d) The function of the capacitor is as follows. The above current regulation requires IC2 to generate a signal to cancel any currents drawn by IC1. However, due to propagation delays through IC2, the cancellation may not be accurate at high frequencies, and in the worst case, the circuit may even become unstable. Thus, the capacitor is there to roll off the gain of IC2, protecting against these effects. However, the cancellation no longer works, so redo (c), calculating I_{out} in terms of V_{out} at high frequencies (i.e., assume that I_{out} and V_{out} are the amplitudes of high-frequency, oscillating signals).

Problem 6.16

In this problem, you will analyze a schematic for a precision current source that powers a laser diode (see p. 6 in the referenced pdf file).\(^5\) You will probably need to look up data sheets for various components in analyzing this circuit.

(a) Suppose $R_{\text{limit}} = 10 \, \text{k}\Omega$. What is the maximum possible (dc) voltage at pin 3 of the AD820? Assume the 2N7000 is an open circuit. This is the control voltage that sets the current through the laser diode. Note that the 20-\text{k}\Omega wiper of the (course adjust) pot is bypassed by a capacitor to ensure the control voltage has little high-frequency noise.

(b) Now look at the relay on the left-hand side of the schematic. This is the “laser enable” part of the circuit, which either passes or overrides (i.e., sets to zero) the control voltage. Note the two *momentary* switches (i.e., they are push-buttons, only connected while you are actually pushing them but the circuit “remembers” the last one you pushed). Explain how this section of the circuit works to enable and disable the laser. Include the operation of the status LED (why doesn’t the LED burn out if it is powered by 15 V?), and explain why this circuit has a “soft-start” feature.

(c) Now analyze the AD820, which regulates the diode current according to the control voltage at pin 3. For the purposes of this analysis, ignore C0, C1, and R1 (i.e., replace them by open connections) as well as R0, R2, and C2 (i.e., replace them by short circuits). These are needed for stability, but I haven’t discussed much about this yet. Thus, the feedback loop consists of the BUF634’s, resistor SR10, and the INA128 (assume the gain of the INA128 is 10). What is the purpose of the BUF634’s, why are there 2 of them, and what is with the 10\, \Omega resistors? What is the maximum current through the laser diode given your answer in (a)? *Explain.*

(d) Look at the power-supply connections of the various amplifiers. Explain the differences in the bypass circuits, and *why* the chips are bypassed in different ways (i.e., why not bypass them all in the same way?).

(e) Now go back to the AD820, and consider it separately from the other ICs, but this time *with* R0-R2, and C0-C2. Also assume pin 3 is grounded. What is the gain at low frequencies? High frequencies?
Chapter 7

PID Control

A major theme in our study of op-amps is that feedback, and negative feedback in particular, is a useful tool for improving the behavior of amplifiers. It is also useful in the realization of circuits that would otherwise be complex or difficult to implement (the logarithmic amplifier is a good example; see Problem 5). Of course, feedback is similarly useful beyond op-amp circuits, and we will consider feedback control more generally as a tool for maintaining systems in a desired “target” state. As it turns out, op-amp circuits are useful in realizing one of the popular, general-purpose control methods, PID control, which we will define shortly.\(^1\)

7.1 Basics of Linear Control

Schematically, we can represent a feedback-control system as in the diagram below.

![Feedback Control System Diagram](http://example.com/feedback_diagram.png)

There are several important elements that interact here.

- **The plant** is the system to be controlled. (That’s plant as in “chemical plant,” not a shrub.) We assume the plant to have an input and an output. The output is some scalar quantity that we want to control, such as temperature, position, voltage, frequency, speed, etc. The input is some other scalar “knob” by which we can affect the plant. In linear control theory, we will assume that the plant is a linear filter with transfer function \(\tilde{G}(\omega) \).

- **The controller** is a system that analyzes the state of the plant and implements a control procedure to the plant input. Again, we will treat this as a linear filter with transfer function \(\tilde{K}(\omega) \).

- **The goal** of the control is to make the output signal \(y(t) \) follow the input signal \(r(t) \) as closely as possible. The control system should, however, be robust to environmental perturbations, which are something like random changes in \(r(t) \). In temperature stabilization, for example, the temperature control should be robust to fluctuations in the surrounding temperature (e.g., due to the day/night cycle).

• The **error** is defined as the difference between the desired and actual states:

\[e(t) := r(t) - y(t). \]

(7.1)

Because of the negative sign on \(y(t) \) here, feeding this error signal into the controller amounts to negative feedback to the plant, assuming the low-frequency transfer characteristics of the controller and plant have no phase shift.

• The **feedback signal** \(u(t) \) is the error \(e(t) \), modified by the controller in frequency space.

Of course, more realistic systems may not be linear, and may have vector inputs and outputs. The scalar case is still important both conceptually and practically, so we will focus on only this here; however, note that the vector case can sometimes be treated well enough as several, parallel scalar loops—the nature of feedback control is to correct for errors, and so it can often tolerate some slop in the model. The nonlinear case is more complex in theory, but often a simple, pragmatic approach is to approximate the nonlinear system by a linearized version, so that linear theory applies. Again, this can sometimes work even when the approximation is quite drastic.

7.2 Example: First-Order Plant, Proportional Control

As a simple example, suppose we take the plant to be a first-order, low-pass filter, with

\[\tilde{G}(\omega) = \frac{G_0}{1 - i\omega/\omega_0}, \]

(7.2)

where \(G_0 \) is the dc gain, and \(\omega_0 \) is the cutoff frequency of the filter. A more concrete example where this model applies is temperature control of a room, where the input is a simple, electric heater, and the output is the room temperature. The low-pass-filter nature of the room is apparent in the exponential settling of the room temperature when the input (power setting of the heater, not a thermostat) changes.

For the controller we will implement simple **proportional control**, which just means that the control signal is proportional to the error. That is, we have a constant transfer function

\[\tilde{K}(\omega) = K_P, \]

(7.3)

(proportional controller transfer function)

where \(K_P \) is the **proportional gain**.

7.2.0.1 General Result: Closed-Loop Transfer Function

To analyze our simple example, we will first examine a more generally useful result. To introduce some notation, for time domain quantities like \(y(t) \), we will denote their frequency-domain counterparts by \(\tilde{y}(\omega) \)—that is \(\tilde{y}(\omega) \) is the amplitude of the frequency \(\omega \) that is present in \(y(t) \). Given the connections in the circuit above, we have

\[\tilde{y}(\omega) = \tilde{K}(\omega) \tilde{G}(\omega) \tilde{e}(\omega), \]

(7.4)

where

\[\tilde{e}(\omega) = \tilde{r}(\omega) - \tilde{y}(\omega). \]

(7.5)

Eliminating the error \(\tilde{e} \), we have

\[\tilde{y}(\omega) = \tilde{K}(\omega) \tilde{G}(\omega) [\tilde{r}(\omega) - \tilde{y}(\omega)]. \]

(7.6)

Then

\[\tilde{y}(\omega) [1 + \tilde{K}(\omega) \tilde{G}(\omega)] = \tilde{K}(\omega) \tilde{G}(\omega) \tilde{r}(\omega), \]

(7.7)

so

\[\tilde{y}(\omega) = \frac{\tilde{K}(\omega) \tilde{G}(\omega)}{1 + \tilde{K}(\omega) \tilde{G}(\omega)} \tilde{r}(\omega). \]

(7.8)
This gives the output response \(\tilde{y} \) in terms of the input \(\tilde{r} \). Since the control system is linear, we have derived the transfer function for the entire control system, or the **closed-loop transfer function**

\[
\tilde{T}(\omega) = \frac{\tilde{K}(\omega) \tilde{G}(\omega)}{1 + \tilde{K}(\omega) \tilde{G}(\omega)}.
\]
(7.9)
(closed-loop transfer function)

Relating this back to op-amps, in the limit where the gain product \(\tilde{K} \tilde{G} \) becomes large, the transfer function approaches unity (and is otherwise less than unity).

7.2.1 Frequency-Domain Solution of the Example

Returning to our example, we have \(\tilde{K} = K_p \) and \(\tilde{G} \) defined by Eq. (7.2), so the closed-loop transfer function becomes

\[
\tilde{T}(\omega) = \frac{K_p \tilde{G}_0}{K_p \tilde{G}_0 + 1 - i\omega/\omega_0} = \left(\frac{K_p \tilde{G}_0}{K_p \tilde{G}_0 + 1} \right) \frac{1}{1 - i\omega/\omega_0(K_p \tilde{G}_0 + 1)}.
\]
(7.10)

This is still the transfer function for a low-pass filter, but now the dc gain is

\[
\tilde{T}(\omega = 0) = \frac{K_p \tilde{G}_0}{K_p \tilde{G}_0 + 1},
\]
(7.11)

compared to the original dc gain of \(\tilde{G}_0 \), and the control becomes ideal as \(K_p \to \infty \) (at least in this simple model; this is not true in general for real control systems). Also, the new cutoff frequency is \(\omega_0(K_p \tilde{G}_0 + 1) \), which is larger than the original \(\omega_0 \), particularly for large \(K_p \). Since the cutoff frequency is inversely proportional to the decay time, we can see that a larger cutoff frequency is desirable, as it means the control system “settles” more quickly.

7.2.2 Time-Domain Solution of the Example

To examine this settling behavior more, we can also transfer the analysis for this example into the time domain. Returning to Eq. (7.6), and putting in Eq. (7.2),

\[
\tilde{y}(\omega) = \tilde{K}(\omega) \tilde{G}(\omega) \left[\tilde{r}(\omega) - \tilde{y}(\omega) \right] = \frac{K_p \tilde{G}_0}{1 - i\omega/\omega_0} \left[\tilde{r}(\omega) - \tilde{y}(\omega) \right].
\]
(7.12)

Rearranging a bit, we find

\[
\tilde{y}(\omega) (\omega_0 - i\omega) = \omega_0 K_p \tilde{G}_0 \left[\tilde{r}(\omega) - \tilde{y}(\omega) \right].
\]
(7.13)

We can change this to the time domain by identifying the time-domain counterparts to each variable, and using \(\partial/\partial t \equiv -i\omega \), to find

\[
\omega_0 y(t) + \dot{y}(t) = \omega_0 K_p \tilde{G}_0 \left[r(t) - y(t) \right].
\]
(7.14)

Solving for \(\dot{y} \),

\[
\dot{y} = -\omega_0 y + \omega_0 K_p \tilde{G}_0 (r - y).
\]
(7.15)

There are two terms here. The first is a simple damping term, again with a time constant of \(1/\omega_0 \). The second term is a forcing term, where the system is “driven” by the error \(e = r - y \). The system always tries to eliminate the error. Since it does so via simple exponential relaxation, it is always stable—it never “runs away” from the zero-error point. Note that the drive is stronger for larger \(K_p \), meaning that more control has more effect on the system, as we should expect.

7.2.3 Constant Input and Proportional Droop

As a simpler version of this example, let’s try a constant input \(r(t) = r \). What is the steady-state solution (\(\dot{y} = 0 \))? From Eq. (7.15), we have

\[
\omega_0 y_{ss} = \omega_0 K_p \tilde{G}_0 (r - y_{ss}).
\]
(7.16)
and solving for the steady-state output y_{ss}, we find

$$y_{ss} = \frac{K_p G_0}{1 + \omega_0 K_p G_0} r.$$ \hfill (7.17)

Then we see that the (proportional) control system only achieves the goal perfectly (eventually) in the limit $K_p \rightarrow \infty$. This is the fundamental problem with proportional control: the controller only acts if there is error, so there must be some steady-state error, or droop, for any finite proportional gain K_p.\footnote{For a good story of proportional droop, see the introduction to David Sellars, “An Overview of Proportional plus Integral plus Derivative Control and Suggestions for Its Successful Application and Implementation,” http://hdl.handle.net/1969.1/5215.} In op-amp circuits, the gain is large for just this reason, but for more complex, real-world control systems (electronic, mechanical, etc.), there are usually limits on K_p to maintain loop stability.

7.3 Integral Control

One approach to fixing the problem is to introduce an infinite gain only at dc, where the time delays that usually cause feedback-loop stability problems won’t matter much. This is precisely what an integrator does: recall that an op-amp integrator (Section 6.4.2) has a gain of the form $-i/\omega RC$. More generally, integral control has a transfer function of the form

$$\tilde{K}(\omega) = \frac{i K_I}{\omega \tau},$$ \hfill (7.18)

(integral controller transfer function)

where τ is a time constant and K_I is the (dimensionless) integral gain (note that τ just acts like another gain parameter here). Then noting that $1/(-i\omega)$ is an antiderivative, the controller output is

$$u(t) = \frac{K_I}{\tau} \int_0^t dt' e(t').$$ \hfill (7.19)

That is, the controller has a built-in “memory” of past error in the feedback. This allows correction of the droop, because we no longer require an error at the present moment to have a nonzero control signal $u(t)$.

7.3.1 Example: First-Order Plant, Integral Control

Now back to the example that we introduced in Section 7.2. In the time domain, the same steps leading up to (7.15) now give

$$\dot{y} = -\frac{y}{\tau} + \frac{K_p G_0}{\tau^2} \int_0^t dt' [r - y(t')],$$ \hfill (7.20)

where we are taking $\tau = 1/\omega_0$ and we are still assuming a constant control input r. It is more convenient to handle an ordinary differential equation, rather than an integro-differential equation, so we can differentiate this equation to obtain

$$\ddot{y} = -\frac{\dot{y}}{\tau} + \frac{K_p G_0}{\tau^2} [r - y(t)].$$ \hfill (7.21)

In steady state, $\dot{y} = \ddot{y} = 0$, and so we have

$$y_{ss} = r,$$ \hfill (7.22)

which means that we obtain exactly the target in steady state: there is no droop with (ideal) integral control.

7.3.2 Frequency Domain

In the frequency domain, for this example with general closed-loop transfer function (7.9) and example plant function (7.2), we have

$$\tilde{T}(\omega) = \frac{\tilde{K}(\omega) \tilde{G}(\omega)}{1 + \tilde{K}(\omega) G(\omega)} = \frac{1}{1 - i\omega/\omega_0 K_I - \omega^2/\omega_0^2 K_I}.$$ \hfill (7.23)
This transfer function is second order in the denominator because of the frequency dependence of the integrator, and is qualitatively different than the first-order low-pass filter that we obtained for proportional control.

To see this, compare this to a damped, forced harmonic oscillator, which has the form
\[\ddot{y} + \gamma \dot{y} + \omega_0^2 y = f(t), \] (7.24)
where \(\gamma \) is a damping rate, and \(f(t) \) is a forcing function (we have set the mass to 1). In the frequency domain, this becomes
\[(-\omega^2 - i\gamma\omega + \omega_0^2) \tilde{y} = \tilde{f}(\omega), \] (7.25)
and solving for \(\tilde{y} \) gives
\[\tilde{y} = \frac{\tilde{f}(\omega)/\omega_0^2}{1 - i\gamma\omega/\omega_0^2 - \omega^2/\omega_0^2}. \] (7.26)
The transfer function here has the same form as for the integrator control of a low-pass filter in Eq. (7.23). In the integrator control problem, a large integral gain \(K_I \) is equivalent to a large oscillation frequency \(\omega_0 \) relative to the damping rate \(\gamma \) in the harmonic-oscillator problem. This leads to underdamped oscillations, which means the controller is overshooting the target state.

Again, note that \(\tilde{T}(\omega) \rightarrow 1 \) as \(\omega \rightarrow 0 \). This means that there is no steady-state droop in this integral-control example.

7.4 Proportional–Integral (PI) Control

It is, of course, possible to combine the benefits of proportional and integral control by using a controller with both features. The simplest way to combine these is a simple linear combination:
\[\tilde{K}(\omega) = K_P + \frac{K_I}{\omega \tau}. \] (7.27)
This is the transfer function for **proportional–integral (PI) control**. The second term gives integral control, which eliminates droop issues. The first term is a proportional term, which gives more high-frequency response, and thus faster setting. In the example of the single-pole plant from Section 7.2, if we work out the closed-loop transfer function, we obtain
\[\tilde{T}(\omega) = \frac{1 - i(K_P/K_i)(\omega/\omega_0)}{1 - i(1 + K_P/\omega_0 K_i - \omega^2/\omega_0^2 K_i)}. \] (7.28)
(Again \(\omega_0 = 1/\tau \) here.) Note that in the dc limit, \(\tilde{T}(\omega \rightarrow 0) = 1 \), which means there is no steady-state droop, as in the integral-control case. In the high-frequency limit,
\[\tilde{T}(\omega \rightarrow \infty) \sim \frac{-i(K_P/K_i)}{(1 + K_P/\omega_0 K_i - i\omega/\omega_0 K_i)} = \frac{-iK_P}{(1 + K_P) - i\omega/\omega_0}. \] (7.29)
In the high-frequency limit, the transfer function reduces to a first-order transfer function, in which case we no longer expect overshoot behavior, as we did in the integral case.

7.5 Proportional–Integral–Derivative (PID) Control

In **proportional–integral–derivative (PID) control**, the idea is to add a derivative term to PI control, so the transfer function is
\[\tilde{K}(\omega) = K_P + \frac{iK_I}{\omega \tau} - i\omega \tau K_D. \] (7.30)
Here, \(K_D \) is the derivative gain. Intuitively, this can help in cases where overshoot and ringing is a problem. Qualitatively, consider the overshooting case below in blue, where the input is suddenly changed at the time marked by the dashed green line.
Qualitatively, the overshoot occurs because the slope of the error signal is too steep, due to the action of the controller. By putting in a term proportional to the derivative, the controller “senses” the steep slope corresponding to an impending overshoot, and reduces the control action. This can result in better settling, as in the dashed red line. In terms of the closed-loop transfer function, the effect of the derivative gain is to modify the damping coefficient of the feedback system, which can eliminate the ringing and promote better settling.

Setting the parameters for a PI or PID loop is something of an art. We won’t get into this here, but one reasonably simple method for setting the gain parameters is the Ziegler-Nichols method.\(^3\)

Part II

Digital Electronics
Chapter 8

Binary Logic and Logic Gates

8.1 Binary Logic

The idea behind *binary logic* is to represent information using only two states. You can call these states *TRUE* and *FALSE*, or you can use the corresponding numerical values 1 and 0. We will explore in much more detail how to represent and use information in this form, but for now, note that we call the fundamental (abstract) element that carries these states a *bit*. That is, a single bit can have either the values 0 or the value 1.

The idea behind *digital logic* and *digital electronics* is to represent the binary states by two different electronic states, usually different voltages or voltage ranges, but sometimes different currents. For example, the standard for *transistor-transistor logic (TTL)* is to use nominal voltages of 0 V for *FALSE*, and +5 V for *TRUE*. We will get into more detailed specifics later.

Changing information into a digital representation has advantages and disadvantages. The main disadvantage of this approach is that it is necessary to *sample* analog signals (i.e., change continuous signals into discrete representations). The main advantage is in robustness to noise, as long as the noise amplitude is far below the physical separation between the logic states (e.g., TTL logic is robust to noise interference provided the noise is smaller than 5 V). Of course, for sophisticated logic systems (computers), often the advantages far outweigh the disadvantages.

We will treat binary logic as an abstract concept for now, and learn how to manipulate binary information. Then we will come back later to the physical implementation of binary logic.

8.2 Binary Arithmetic

In *binary arithmetic*—the binary analogue of the more usual arithmetic—the first thing to deal with is how to *represent* numbers in binary. To keep things relatively simple, we will stick to representing *integers* in binary (as opposed to rational approximations to real numbers, which are represented in either *fixed-point* or *floating-point* notation, the latter of which is more complicated).

8.2.1 Unsigned Integers

The most basic form of a binary integer is an *unsigned integer*. Unsigned integers are just like decimal integers, but instead of counting from 0–9 and then carrying a 1 to the next place, you just count from 0-1 and then carry instead. (So the counting is 0, 1, 10, 11, 100, 101, 110, 111, . . .) You can understand converting between binary and decimal best via an example. Suppose that we have the unsigned integer 10112 (the subscript “2” denotes binary, or base-2 arithmetic). There are four digits, which represent, from right to left, the “ones,” “twos,” “fours,” and “eights” places (just like the ones, tens, etc. in decimal counting). Then proceeding from the ones (rightmost) place, or the *least-significant bit (LSB)*, to the eights (leftmost)
place, or the most-significant bit (MSB).

\[1011_2 = 1 \times 2^3 + 1 \times 2^1 + 0 \times 2^2 + 1 \times 2^0 = 1 + 2 + 8 = 11. \]

(8.1)

Note that with \(N \) digits, we can represent 2 values with each bit, for a total of \(2^N \) numbers (i.e., ranging from 0 to \(2^N - 1 \)).

8.2.1.1 Binary-Coded Decimal

Another representation of unsigned integers comes in binary-coded decimal (BCD), where the idea is to convert each digit in a decimal number to binary, using 4 bits per decimal number. For example, \(11_{10} = 1011_2 \), but in BCD, this would be written \(00010011 \). This representation is “wasteful” in that there are 16 states for each digit but only 10 decimal digits, but this representation is very convenient for implementations of digital numeric displays.

8.2.1.2 Hexadecimal

Hexadecimal arithmetic is just base-16 arithmetic. The 16 states are represented by 0–9 as usual, and the “extras” by A–F for the values 10–15. Since 4 bits, or a nybble (8 bits is a byte) has 16 states, a single hexadecimal digit is a convenient and compact representation for a binary nybble. Thus, for example, \(1011_2 = BA_{16} \).

8.2.2 Negative Values and Sign Conventions

Besides unsigned integers, it is useful to represent negative integers in binary. There are multiple conventions for this, however.

8.2.2.1 Sign-Magnitude Convention

The simplest convention, the sign-magnitude convention, is to tack on an extra bit (as a new MSB) to represent the sign, and the rest of the digits are just like an unsigned integer. For example, one nybble ranges from 0–15 as an unsigned integer, but as a signed value, it ranges from \(-7 \) to \(+7 \) as a signed integer (the three LSB’s range from 0–7, and the MSB gives the sign). Note that one value (1000) is “wasted” in this convention, because it is not different from (0000). The main advantage is the simplicity of the scheme. You can see the relatively serious disadvantage, however, by considering a couple of example numbers,

\[0001_2 = 1_{10}, \quad 1001_2 = -1_{10}. \]

(8.2)

Unfortunately, adding these two numbers gives \(1010_2 = -2_{10} \), but really we’d like these to add to zero.

8.2.2.2 Two’s Complement

Preserving this additive-inverse property of negative numbers is the idea behind the 2’s-complement representation: if \(n \) is a positive integer, just define the number \((-n) \) such that it satisfies \(n + (-n) = 0 \) in binary addition. For example, suppose we have

\[n = 0001_2 = 1_{10}. \]

(8.3)

Then \(-1_{10} \) in 2’s-complement notation is

\[-n = 1111_2 = -1_{10}. \]

(8.4)

To see this, first note that

\[n + (-n) = 10000_2. \]

(8.5)

but the important point is that we drop the MSB, because we regard addition in 4-bit binary as being modulo 16.
The advantage, of course, is that addition works as expected with positive and negative numbers in 2's-complement notation, and so does multiplication.

There are a couple of useful procedures for finding 2's-complement values (i.e., for finding the negative counterpart of a positive number):

1. Start by exchanging $0 \leftrightarrow 1$ on each digit, then add 1 to the result. For example, in the example above,
 \[0001_2 \rightarrow 1000_2 + 1 = 1111_2.\] (8.6)

2. Note also that in N-bit arithmetic, $2^N - 1 = -2^{N-1}$. So we just need to figure out what number to add to -2^{N-1} to get the number we want. For example, in the above example in 4-bit arithmetic, $2^3 = 1000_2 = -2^3 = -8$. We want -1, which means we have to add 7 to -8. Since $7 = 0111_2$, we just say
 \[-1 = -8 + 7 = 1000_2 + 0111_2 = 1111_2.\] (8.7)

Alternately, we are just saying that for any negative number that we want in N-bit arithmetic, add 2^N and then find the unsigned binary value. (In the example, add 16 to -1 to get 15, or 1111_2. In this convention, we’re just taking the unsigned range of $2^{N-1} + 1$ to 2^N, and shifting the whole block to below zero.

8.3 Logic Gates

So far, we have discussed only binary-logic values and how to use them to represent numbers. But we also need to implement transformations on logic values, which are accomplished via logic gates, which is basically a logic-valued function of logic variables. We will talk about the simplest logic gates now, and just mention that more complicated gates can be represented in terms of the simpler ones.

8.3.1 One-Input Gates

The simplest logic gates are the one-input gate, which takes only one logic value as input. A simple example is the buffer gate, which simply copies its input A to the output Q. The symbol for the buffer is below.

\[
A \quad Q = A
\]

Above on the right is the truth table, a table enumerating all inputs and the corresponding output values.

The other main one-input gate is the inverter or NOT gate, which changes the state of the input. The symbol and truth table are below.

\[
A \quad Q = \overline{A}
\]

Note the circle “◦” in the diagram represents a NOT operation, which is denoted symbolically by a bar (that is, if $A = 1$, the $\overline{A} = 0$). This same NOT operation may be applied to inputs as well. For example, this is a buffer gate,

\[
A \quad Q = A
\]

and this is another NOT gate.

\[
A \quad Q = \overline{A}
\]

The buffer and NOT gates are the only one-input gates. The only other possibilities (in terms of truth-table content) have a fixed output for any input, which is usually not drawn as a gate with an input.
8.3.2 Two-Input Gates

8.3.2.1 AND and NAND

Two-input gates are important, and easily available as electronic components. The first gate is the AND gate, whose symbol and truth table are shown below.

\[Q = A \cdot B = AB = A \land B \]

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Q = AB</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

There are several notations for the AND operation in the diagram. Note that the output is only TRUE if both inputs are TRUE.

Adding a NOT to the output of the AND gate gives a NAND gate (i.e., NOT AND), which is just the negation of the AND gate.

\[Q = \overline{A \cdot B} = \overline{AB} = \overline{A \land B} \]

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Q = \overline{AB}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

This gate is more important than it may seem at first glance, as we’ll return to below.

8.3.2.2 OR and NOR

The next gate is the OR gate, whose operation is symbolically represented by “+.”

\[Q = A + B = A \lor B \]

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Q = A + B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

The output here is TRUE if either input is TRUE (or both inputs are TRUE). Of course, we can add a NOT to the output.

\[Q = \overline{A + B} = \overline{A \lor B} \]

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Q = \overline{A + B}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Thus, we obtain the NOR gate (NOT OR).

8.3.2.3 Universal Gates

The NAND and NOR gates are special, because they are universal gates. That is, any logic operation can be realized by connecting a bunch of NAND gates, or by connecting a bunch of NOR gates.

8.3.2.4 XOR and XNOR

We’ll briefly also mention the XOR gate (“exclusive OR”),

\[Q = A \oplus B \]

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Q = A \oplus B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
which is just like the OR, but the output is \textbf{FALSE} if \textit{both} inputs are \textbf{TRUE}. The complement of the XOR gate is the XNOR gate (“exclusive NOR”), which is again like the NOR gate except for the case of two \textbf{TRUE} inputs.

\[
\begin{array}{c|c|c}
A & B & Q = A \oplus B \\
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{array}
\]

In mathematical logic, the \textbf{XNOR} is the same as “if and only if.”

\subsection{More Complex Gates}

More complex gates are possible; for example, consider the 3-input \textbf{AND} gate below.

\[
\begin{array}{c|c|c|c}
A & B & C & Q = ABC \\
1 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
\end{array}
\]

The idea is a reasonable obvious generalization of the 2-input \textbf{AND}: the output is \textbf{TRUE} only when \textit{all} inputs are \textbf{TRUE}.

\subsection{Circuit Practice}

Here are a couple of gates with negated inputs.

(a) Work out the truth table and find which 2-input gate that we introduced above is equivalent.

\[
\begin{array}{c|c|c|c}
A & B & Q = \overline{A} \cdot \overline{B} = \overline{A B} = A \land B \\
\end{array}
\]

(b) Do the same for this gate.

\[
\begin{array}{c|c|c|c}
A & B & Q = \overline{A} + \overline{B} = \overline{A B} = A \lor B \\
\end{array}
\]

(c) How do you make an inverter from a NAND gate?

\textbf{Solution.}

(a) NOR gate.

(b) NAND gate.

(c) Tie the inputs together.

\[
\begin{array}{c|c|c|c}
A & Q = \overline{A} \\
1 & 0 \\
0 & 1 \\
\end{array}
\]
8.5 Exercises

Problem 8.1

Convert:

(a) 89_{10} to 8-bit, unsigned binary
(b) -89_{10} to 8-bit, signed (sign-magnitude) binary
(c) -89_{10} to 8-bit, signed (2's complement) binary
(d) 89_{10} to hexadecimal
(e) $ABCD_{16}$ to decimal
(f) 0110010101100110_2 to hex
(g) 0110011001100110_2 to decimal
(h) 10011001_2 (2's complement binary) to decimal
(i) 10011001_2 (sign-magnitude binary) to decimal
(j) 11111111_2 (unsigned) to decimal

Problem 8.2

Convert:

(a) 75_{10} to 8-bit, unsigned binary
(b) -75_{10} to 8-bit, signed (sign-magnitude) binary
(c) -75_{10} to 8-bit, signed (2's complement) binary
(d) 75_{10} to hexadecimal
(e) $ABBA_{16}$ to decimal
(f) 1010101010101010_2 to hex
(g) 1010101010101010_2 to decimal
(h) 11011101_2 (2's complement binary) to decimal
(i) 11011101_2 (sign-magnitude binary) to decimal
(j) 11111111_2 (unsigned) to decimal

Problem 8.3

(a) Suppose x is a power of 2 (i.e., $x = 2^n$ for some positive integer n, $n \in \mathbb{Z}^+$). What does x “look” like when written out in (unsigned) binary? (That is, how can you recognize powers of two, when written in binary, just by looking at them?)

(b) In writing computer programs it is sometimes useful to check whether an integer is a power of 2. (One example is in computing numerical Fourier transforms, where the most common algorithms operate only on arrays whose lengths are powers of 2.)

A nice trick for checking if x is a power of 2 is to compute $x \land (x - 1)$. That is, subtract 1, and compute the bitwise AND with the original. How do you tell from the result if x is a power of 2? (You might try this on some examples to see the pattern.)

Note: “bitwise AND” means to compute the AND of corresponding binary digits. For example, $1100_2 \land 1010_2 \equiv 1100_2 \cdot 1010_2 = 1000_2$.
Problem 8.4

Short-question potpourri:
(a) For any integer expressed in decimal, suppose you add the digits. The result is divisible by 3 if and only if the original number is also divisible by 3. Does this statement also hold for binary numbers? If so, explain why. If not, provide a counterexample.
(b) What is $1000\ 0000$ in decimal? Interpret the given number as an 8-bit, signed (2's complement) binary number.
(c) What is 111_{10} in unsigned binary?
(d) What is 111_{10} in hex?
(e) Suppose $1010_2 \oplus B = 1100_2$, where the operation is bitwise. What is B in decimal?

Problem 8.5

Short-question potpourri:
(a) What is $2^{457} - 3$ in (unsigned) binary? (I suggest describing how to write down the binary expression, not actually writing it out.)
(b) What is $1010 \ 1010_2 - 0101 \ 0101_2$? (Do the calculation in binary.)
(c) What is 1101_2 in hex?
(d) What is $1101_2 + 3_{16}$? Interpret both numbers as 4-bit, 2's complement binary numbers, and give your answer in 4-bit, 2's complement binary.
(e) Suppose you generalize decimal-fraction notation (e.g., $0.9 = \frac{9}{10}$) to binary fractions in the obvious way (e.g., $0.1_2 = \frac{1}{2}$). What is the value of $0.T_2 \equiv 0.111 \ldots_2$ (i.e., the overbar here means a repeating digit) in decimal?
Chapter 9

Boolean Algebra

9.1 Algebras and Boolean Algebra

Intuitively, a Boolean algebra is an abstract, compact notation for logic (in which we will see that \(1+1 = 1\)). A Boolean algebra is defined on the set \(\{0, 1\}\) (these are the “values” for Boolean variables), and has two binary operations “+” and “·” defined, though not the usual addition and multiplication. The + operation is defined by the truth table for the OR gate, while the · operation is defined by the truth table for the AND gate. Recall that the truth tables for the AND and OR operations on Boolean variables \(A\) and \(B\) are invariant under the exchange of \(A\) and \(B\), so both + and · are commutative (i.e., the order of the variables don’t matter):

\[
A + B = B + A, \quad AB = BA. \tag{9.1}
\]

(We’re not bothering to write the “·” explicitly here.) These operations are also associative, which means that the order of two successive operations does not matter:

\[
A + (B + C) = (A + B) + C, \quad A(BC) = (AB)C. \tag{9.2}
\]

The other usual algebraic property that holds here is the distributive property:

\[
A(B + C) = (AB) + (AC). \tag{9.3}
\]

Finally, a number of simple identities hold for the Boolean binary operators:

1. \(\overline{A} = A\)
2. \(A \cdot 0 = 0\)
3. \(A \cdot 1 = A\)
4. \(A \cdot A = A\)
5. \(A \cdot \overline{A} = 0\)
6. \(A + 0 = A\)
7. \(A + 1 = 1\)
8. \(A + A = A\)
9. \(A + \overline{A} = 1\)

Roughly speaking, the NOT operation (bar) is something like a minus sign, in which case some of these identities seem familiar, but some seem less so (like \(A + 1 = 1\)).
9.2 Boolean-Algebraic Theorems and Manipulations

9.2.1 De Morgan’s Theorems

Recall the circuit practice from Section 8.4, where we examined AND and OR gates, where both inputs are negated. For example, the negated-input AND gate is equivalent to NOR gate, as shown schematically below.

\[
\begin{align*}
\overline{A} \cdot \overline{B} & = \overline{A + B} \quad \text{(De Morgan theorem)} \\
A + B & = \overline{A} \cdot \overline{B} \quad \text{(De Morgan theorem)}
\end{align*}
\]

In algebraic notation, this is

\[
\overline{A} \cdot \overline{B} = \overline{A + B}. \tag{9.4}
\]

Similarly

\[
A + B = \overline{A} \cdot \overline{B}. \tag{9.5}
\]

These are extremely useful in transforming negated expressions, as we will see.

9.2.2 Absorption Theorems

Two other useful theorems are called absorption theorems:

\[
\begin{align*}
A + (A \cdot B) & = A \\
A \cdot (A + B) & = A.
\end{align*} \tag{9.6}
\]

We will leave the proofs as exercises (in circuit practice).

9.2.3 Another Theorem

Here is another theorem that is often useful:

\[
A + \overline{AB} = A + B. \tag{9.7}
\]

We will again leave the proof as an exercise, but essentially this is saying that because of the OR with \(A \), the \(\overline{A} \) never really matters.

9.2.4 Example: XOR Gate

As an example of Boolean algebra and implementation of algebraic expressions in gates, consider the XOR operation, where we would like to show that

\[
A \oplus B = \overline{AB} + \overline{A} \overline{B}. \tag{9.8}
\]

We can first do this by working through the truth table for the right-hand side, and verifying that it matches the truth-table results for \(A \oplus B \).

<table>
<thead>
<tr>
<th>(A)</th>
<th>(B)</th>
<th>(\overline{A} \overline{B})</th>
<th>(\overline{AB})</th>
<th>(A \oplus B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Now using this expression, we can show how to implement an XOR gate, in terms of regular gates.
9.2 Boolean-Algebraic Theorems and Manipulations

To trace through this, the negations \(\overline{A} \) and \(\overline{B} \) are realized with NOT gates, and finally two AND gates and an OR gate to generate the correct combination.

9.2.4.1 NAND-Gate Realization

As we alluded to before, NAND and NOT gates are universal, and can be used to realize any gate. So how can we realize an XOR gate out of only NAND gates, for example? Let’s do some algebraic transformations to see how to do this. First, starting with the expression (9.8),

\[A \oplus B = AB + A\overline{B}, \]

we can add in \(A\overline{A} = 0 \) and \(B\overline{B} = 0 \) to obtain

\[A \oplus B = B(A + \overline{B}) + A(\overline{A} + \overline{B}). \]

Then using the second De Morgan theorem (9.5), \(\overline{A + B} = \overline{A} \cdot \overline{B}, \)

\[A \oplus B = B(\overline{AB}) + A(\overline{AB}). \]

Using the same theorem once more,

\[A \oplus B = \overline{[B(\overline{AB})] [A(AB)]}. \]

Now notice that every operation here is a NAND, and we need one operation to generate \(\overline{AB} \), two more to combine it with \(A \) and \(B \), and one more for the final combination. The circuit realizing this expression is shown below.

\[Q = A \oplus B \]

Note that we can obtain a simpler but less-efficient expression by applying the De Morgan theorem only once as follows:

\[A \oplus B = \overline{AB + A\overline{B}} = \overline{(AB)(\overline{AB})}. \]

This is less efficient in terms of NAND gates: two NANDs are needed to make \(\overline{A} \) and \(\overline{B} \), two more to make the combinations \(\overline{AB} \) and \(\overline{AB} \), and one more to make the final combination (a total of 5).

9.2.5 Example: Algebraic Simplification

As another example of simplifying an expression, consider the three-variable expression \((A + B) \cdot (A + C)\). Starting out, we can distribute twice,

\[(A + B) \cdot (A + C) = A \cdot (A + C) + B \cdot (A + C) \]

\[= AA + AC + AB + BC. \]
Then $AA = A$, and using the first absorption theorem in Eqs. (9.6) to write $A + AC = A$,

$$
(A + B) \cdot (A + C) = (A + AC) + AB + BC \\
= A + AB + BC.
$$

(9.15)

Then also $A + AB = A$, so

$$
(A + B) \cdot (A + C) = A + BC,
$$

(9.16)
a somewhat simpler expression (two operations vs. three).

9.3 Karnaugh Maps

It can often be difficult to see how to realize a particular logic function in terms of logic gates, just via algebraic manipulations. One tool that makes this more intuitive, at least for small numbers of inputs (3 or 4), is the **Karnaugh map**. (The cases of 1 and 2 inputs we’ve already mostly covered with standard gates, and it’s easy to do these exhaustively.)

The first idea behind a Karnaugh map is to make a 2D table of logic inputs and truth-table values. The second twist is to order the inputs using a 2-bit **Gray code**, which means that we count as 00, 01, 11, 10, instead of the usual binary-counting order. The point is when counting this way we change only 1 bit at a time (in regular binary, this doesn’t happen when we count from 01 to 10). The motivation for Gray codes comes from mechanical implementations of logic, where you may get spurious transitional states if bits don’t change synchronously (this happens in some fast logic circuits as well). That is, when counting from 01 to 10, the actual sequence may be 01 to 00 to 10 if the LSB changes before the MSB. In terms of the Karnaugh map, the idea is to keep “related” input states grouped together.

The process of hunting for simplifications in a Karnaugh map is hard to explain, but it’s easy to get the idea by studying a few examples.

9.3.1 Three-Input Example

Before, as a Boolean-algebraic example, we showed in Eq. (9.16) that

$$
(A + B) \cdot (A + C) = A + BC.
$$

(9.17)

We will show how to obtain this and other transformations via the Karnaugh map. The first task is to write out the diagram as a table. Notice that the four values of AB are along the top, in Gray-coded order, and the two C values are along the side. We are also writing out each output value for each set of possible input values, so this is just a truth table in 2D form, here for $(A + B) \cdot (A + C)$.

<table>
<thead>
<tr>
<th>C</th>
<th>AB</th>
<th>00</th>
<th>01</th>
<th>11</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Now to analyze this, the idea is to look for blocks of 1’s in square or rectangular shapes ($2 \times 1, 2 \times 2$, etc.). One example is below.
9.3 Karnaugh Maps

The 2×2 block here corresponds to every input where $A = 1$, hence we have labeled it “A.” Similarly, the 2×1 block corresponds to inputs where $B = 1$ and $C = 1$ (hence $BC = 1$), so we label it “BC.” The entire group of 1’s is the union of these two, so the logical expression is the \lor of these two blocks, hence an equivalent expression is $A + BC$.

Generally speaking, bigger blocks correspond to simpler expressions, so the best simplifications occur by covering the 1’s with large blocks. Also, usually it is best to look for blocks with dimensions of 2, 4, 8, etc. As an example, note that we could have done the last covering without any overlap if we kept the 4×4 block and then introduced a 1×1 block, as below.

The small block corresponds to \overline{ABC}, since we have to restrict all three variables, and this leads to the more complicated (but equivalent) expression $A + \overline{ABC}$.

We can also look at some other attempts to simplify with a Karnaugh map that will yield less compact results, just to illustrate the technique. For example, we can “overcover” the 1’s by using two 4×4 blocks, A and B, and then combine them. However, we must exclude one location that has a zero; the location is \overline{ABC}.

Thus, to combine these, we negate the null block and AND the result with the B block to obtain $B\overline{ABC}$. We then \lor this with A to obtain $A + B\overline{ABC}$.

Another possibility is to use a similar technique, but focusing on the 0’s. For example, we can identify a block of mostly zeros, \overline{A}. However, we must exclude the 1, which is located at \overline{ABC}.
Chapter 9. Boolean Algebra

So to find the region of 0’s, we have to negate the 1 block and AND this with the 0 block, to obtain \(\overline{A} \overline{B} \overline{C} \).

Then to get the block of 1’s we must negate the overall result, to obtain \(\overline{A} \overline{B} \overline{C} \). Note that by De Morgan’s theorems this is equivalent to \(A + \overline{ABC} \), as we showed two diagrams ago.

9.3.2 Four-Input Example

In addition to three-input problems, it is not much harder to extend the analysis to four-input problems. For example, consider the following truth table.

<table>
<thead>
<tr>
<th>(AB)</th>
<th>(CD)</th>
<th>(00)</th>
<th>(01)</th>
<th>(11)</th>
<th>(10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(AB)</td>
<td>(CD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>01</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

One thing to notice is that we have extended the vertical direction to cover the two variables \(C \) and \(D \) together, and the other is that we have put in \(4 \times 4 \) blocks that “wrap” around from top to bottom or right to left. That is, the Karnaugh map has periodic boundary conditions for the purposes of finding blocks.

9.3.3 XOR Example

In searching for blocks, it is somewhat harder to see XOR and XNOR blocks, but it is possible. An example is below.

\[
\begin{array}{c|c|c|c|c}
A & B & C & D \\
\hline
00 & 0 & 1 & 0 \ \\
01 & 0 & 0 & 0 \ \\
11 & 0 & 1 & 1 \ \\
10 & 0 & 0 & 0 \ \\
\end{array}
\]

Due to the ordering of the horizontal axis, the \(A \oplus B \) block is split, but we can combine it with the \(C \) via an AND (to intersect the blocks) to obtain a relatively simple expression.

Note that some flexibility is usually beneficial when using a Karnaugh map: it is not necessarily a good tool for finding solutions in terms of a particular gate (e.g., all NAND gates).

9.3.4 Race Hazards

A race condition is a spurious output of a circuit if the inputs don’t change state simultaneously (i.e., a “glitch”). This can be a big problem if this output is the input to a latch or a memory circuit that will “trigger” on the glitch.

Intuitively, in a Karnaugh map, a glitch is possible if the changing inputs cross between disjoint blocks of 1’s, because the output state is being controlled by transitions of two gates feeding into the same final gate. For example, returning to the \((A + B)(A + C) \) example, suppose we make a transition between 111 to 011 in \(ABC \). In this logic realization,
we stay inside the \(BC \) block, so we don’t expect any glitches: the output stays at 1 during the transition. However, in this realization,

we must cross between blocks, so a glitch is possible. Specifically, when \(A \) goes from 1 → 0, a slight delay in \(\overline{A} \) going from 0 → 1 results in the output going momentarily to 0 during the input transition, even though it should remain as 1.

As another example, let’s return to the four-input example.

There is a similar problem here when \(ABCD \) goes from 1100 → 1000, because we cross in between blocks. However, by adding another block, we can “protect” the circuit from glitches in this transition. Here, we add \(C \overline{D} \), and combine it with an OR operation.
9.4 Circuit Practice

9.4.1 Boolean-Algebra Theorems

Here, you should prove two things that we only introduced earlier.

(a) Prove the first absorption theorem in Eqs. (9.6):
\[A + (A \cdot B) = A. \]
(9.18)

Use a truth table or algebra.

(b) Prove the second absorption theorem in Eqs. (9.6):
\[A \cdot (A + B) = A. \]
(9.19)

Solution.

(a) First suppose \(B = 0 \). Then
\[A \cdot B = A \cdot 0 = 0, \]
(9.20)
and so
\[A + (A \cdot B) = A + 0 = A. \]
(9.21)

Now take the other case, where \(B = 1 \). Then
\[A \cdot B = A \cdot 1 = A, \]
(9.22)
and so
\[A + (A \cdot B) = A + A = A. \]
(9.23)

(b) Using the same method, first suppose \(B = 0 \). Then
\[A + B = A + 0 = A, \]
(9.24)
and so
\[A \cdot (A + B) = A \cdot A = A. \]
(9.25)

Now taking the other case \(B = 1 \),
\[A + B = A + 1 = 1, \]
(9.26)
and so
\[A \cdot (A + B) = A \cdot 1 = A. \]
(9.27)

9.4.2 Karnaugh Map

Write down the Karnaugh map and a logic circuit for the following function: the output is 1 if and only if the input, a 3-bit unsigned integer, is prime. (Don’t count 0, 1, or 2 as prime integers.)

Solution. The primes are 3, 5, and 7. In binary, these are 011, 101, and 111. Hence the Karnaugh map:

<table>
<thead>
<tr>
<th></th>
<th>00</th>
<th>01</th>
<th>11</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

\[(A + B)C \quad (A + B)C \]
The simplest solution for a logic gate is to make a 3×1 block, noting that the AB part is specified by $(A + B)$.

\[
\begin{array}{cccc}
00 & 01 & 11 & 10 \\
0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 \\
\end{array}
\]

\[
\overline{ABC} = (A + B)C
\]

An alternate, and equivalent solution (via De Morgan’s theorems) is shown below, by starting with the 4×1 block C, and then excluding the 0.

The circuit to realize this function is shown below.
9.5 Exercises

Problem 9.1

Simplify the expression
\[Q = \overline{A}BC + \overline{A}BC + \overline{AB}C + AB C, \]
and draw a logic circuit that realizes it. (This can be done with only 3 2-input gates and 1 3-input gate; try to at least reduce this somewhat, and it’s best if your solution reflects the symmetry of the original expression. Also, try to use algebraic transformations rather than writing out truth tables.)

Problem 9.2

Simplify the expression
\[Q = ABC + \overline{A}BC + AB C + A BC, \]
and draw a logic circuit that realizes it. (This is possible with only 1 3-input gate; try to at least reduce this somewhat, and it’s best if your solution reflects the symmetry of the original expression. Also, try to use algebraic transformations rather than writing out truth tables.)

Problem 9.3

(a) Simplify the following Boolean expression:
\[Q = (A + B)(B + A) + \overline{A}B + A + \overline{B} + B. \]

(b) Sketch a realization of this expression (after simplifying!) using only 2-input NAND gates.

Problem 9.4

(a) Simplify the following Boolean expression:
\[Q = (A + B)(A + B) + (A + B)(A + B). \]

(b) Sketch a realization of this expression (after simplifying!) in terms of only XNOR gates.

Problem 9.5

Consider the following circuit, based on 3-input NAND gates.

(a) Write down the logic (Boolean) expression for the circuit.

(b) Write down the truth table.
Problem 9.6
Consider the following circuit, based on 3-input NOR gates.

\[A \quad \text{NOR} \quad B \quad \text{NOR} \quad C \quad \text{NOR} \quad Q \]

Problem 9.7
Show how you can realize an XOR gate \((A \oplus B = A \cdot B + A \cdot \overline{B})\) using only NOR gates.

Problem 9.8
Show how you can realize an XNOR gate \((A \oplus B = A \cdot B + A \cdot \overline{B})\) using only NAND gates.

Problem 9.9
Write out the Karnaugh map for a circuit where the output is true if the input (a 3-bit, unsigned integer, 0–7) is in the Fibonacci sequence. Give a circuit implementation in terms of 2-input gates.

Problem 9.10
Write out the Karnaugh map for a circuit where the output is true if the input (a 3-bit, unsigned integer, 0–7) is one of the first 6 digits of \(\pi\). Give a circuit implementation in terms of 2-input gates.

Problem 9.11
A semiprime number is a positive integer that is the product of two prime numbers. The prime numbers need not be distinct, 1 doesn’t count as one of the primes. For example, 0–3 are not semiprime, but 4 is.

(a) Write down the Karnaugh map for the function of the boolean variables \(A, B, C,\) and \(D\), which is true when the concatenation \(ABCD\) (when converted to decimal as an unsigned integer) is semiprime.

(b) Find a (reasonably simple) boolean expression for this 4-bit semiprime function you diagrammed in (a).

(c) Sketch a logic implementation of this function in terms of logic gates.

Problem 9.12
(a) Write down the Karnaugh map for the function of the Boolean variables \(A, B, C,\) and \(D\), which is true when the concatenation \(ABCD\) (when converted to decimal as an unsigned integer) is greater than or equal to 6.

(b) Find a (reasonably simple) boolean expression for the logic function you diagrammed in (a).

(c) Sketch a logic implementation of this function in terms of only 2-input NAND gates.
Problem 9.13

Find logic to perform multiplication of two 2-bit (unsigned) integers (i.e., 0–3), with a 4-bit output.
Hint: use a separate Karnaugh map for each output bit.¹

Problem 9.14

Find logic to perform addition of two 2-bit (unsigned) integers (i.e., 0–3), with a 3-bit output.
Hint: use a separate Karnaugh map for each output bit.

Chapter 10

Physical Implementation of Logic Gates

So far, we have studied logic and logic gates, but logic is much more useful if we can implement logic gates physically. Generally speaking you can buy these as prepackaged integrated circuits, but it is still useful to understand how to implement these, for (1) extra intuition and (2) to understand the limits and quirks of commonly available electronic logic gates. We will start with simple examples of logic realizations and progress to realistic (but more complicated) cases.

The material here in this chapter relies on previous material on diodes from Chapter 3 and transistors from Chapter 4. However, we will briefly review some of the relevant material here.

10.1 Simple Mechanical Switches

Fundamentally, electronic logic gates work by involving switches. Typically these are some form of electronic switches, but of course these can be ordinary mechanical switches (equivalent to connecting two points by a wire or breaking the wire connection). One simple convention for a single-pole, single-throw (SPST) switch ("single pole" = single circuit to break or connect; "single throw" = single possible connection to make or break), as shown below, is that the closed (conducting) or ON state is TRUE, closed = TRUE

and the open or OFF state is FALSE.

open = FALSE

This convention agrees with a common convention for logic in terms of voltage levels, where HIGH voltage is TRUE and LOW voltage is FALSE, if we consider a relay (magnetically controlled switch), as shown below.

\[V_{\text{in}} = V_+ \rightarrow \text{TRUE} \]
\[V_{\text{in}} = 0 \rightarrow \text{FALSE} \]

The relay is pulled closed when the voltage is HIGH (at some voltage \(V_+ \)), due to the magnetic field of the coil; when the voltage is zero, there is no field and the switch pops open (due to the action of a spring).

Using switches it is easy to see how to construct an AND gate, if two switches are in series, since both switches must close to light the light bulb (the logical “output” here).
Chapter 10. Physical Implementation of Logic Gates

For an OR gate, the two switches are in parallel, so only one switch needs to be closed to light the bulb.

As a final example, an inverter is shown below.

The switch here is a single-pole, double-throw (SPDT) switch ("double throw" = two alternative contacts for the switch), where "up" on the switch is TRUE and "down" on the switch is FALSE.

10.2 Diode Logic (DL)

The simplest "purely electronic" examples of logic come in the form of diode logic (DL). Before examining some DL gates, first let’s review how diodes work.

10.2.1 Diode Review

A diode is a two-terminal device, as shown below, and it acts as a one-way valve for current: current can only flow from the anode to the cathode (in the direction of the “diode arrow” in the schematic symbol).

\[
\text{anode} \quad \rightarrow \quad \text{cathode}
\]

That is, as in the diagram below, if the anode voltage \(V_A \) is greater than the cathode voltage \(V_B \), then current flows; otherwise, no current flows.

\[
A \quad \rightarrow \quad B = A \quad \rightarrow \quad B \quad \text{or} \quad A \quad \rightarrow \quad B \quad \text{if} \quad V_A > V_B \quad \text{or} \quad \text{if} \quad V_A < V_B
\]

You can think of the diode as being a short circuit in the first case ("forward-biased"), and an open circuit in the second ("reverse-biased"). However, the real situation is a bit more complicated: a slightly better model is that there is a forward voltage drop of around 0.6 to 0.7 V when the diode is conducting current.

10.2.2 DL AND Gate

Now to see how to realize gates in DL. Below is a realization of an AND gate. The DL convention here is that 0 V is FALSE, and +5 V is TRUE.
If both inputs are at +5 V then all points are at the same voltage, including the output Q. If one input is low, say A, then the situation is as shown below.

The diode is forward-biased, and thus shorts the output Q to ground. The power-supply voltage (+5 V) is dropped across the resistor because the diode causes sufficient current to flow through the resistor to ground to ensure this. The state of the other input (B) is irrelevant here, because either it “agrees” with A, or if it is HIGH, B’s diode is reverse-biased, so it is disconnected from the circuit.

Actually, the output voltage is not quite 0 V in the latter case; because the diode has a forward-voltage drop, the output FALSE state is more like 0.6 V.

10.2.3 DL OR Gate

Another DL gate, the OR gate, is shown below.

Here, if either input is at +5 V, then the corresponding diode is forward-biased, so output is at +5 V [actually, (+5 − 0.6) V if we account for the diode’s voltage drop]. If both inputs are at 0 V, then the whole circuit, including the output, is also at 0 V.

The main problem in the DL circuits is that one of the signal-voltage states “degrades” by 0.6 V on each gate, so not many gates can be cascaded while keeping the signal levels distinguishable. This motivates the use of active devices in logic circuits that can maintain the proper voltage levels.

10.3 Resistor-Transistor Logic (RTL)

A step up in terms of sophistication is resistor-transistor logic (RTL), which is obsolete but relatively easy to understand. Again, we first have to review how a transistor—specifically, the NPN bipolar junction transistor (BJT)—behaves, in particular as a switch.
10.3.1 BJT Review

Recall that a transistor is a three-terminal device, with terminals labeled as in the diagram below.

The transistor acts as a switch for current, based on another current. We will consider two currents, I_B from the base to the emitter, and I_C from the collector to the emitter, as shown below.

Then I_B acts as the control current, and I_C is the current to be switched. Simplistically, if there is some current I_B, then I_C can flow, so the C–E path acts as a closed switch.

However, if $I_B = 0$, then the C–E path acts as an open switch. There are some extra voltage drops to consider here, but this simple model suffices to understand RTL-gate operation.

10.3.2 RTL NOT Gate

The RTL convention is that $+3.5 \, \text{V}$ is TRUE, with $0 \, \text{V}$ FALSE. The simplest RTL gate is an inverter or NOT gate, shown below.
If the input is \textbf{TRUE}, then $I_n > 0$, and the C–E path conducts. This pulls the output down near ground, or \textbf{FALSE}. If the input is \textbf{FALSE}, then $I_n = 0$, and the C–E path is broken. The resistor pulls the output up to the supply voltage, or \textbf{TRUE}.

10.3.3 RTL NOR Gate

A slightly more complicated example is the \textbf{NOR} gate, shown below.

The operation is the same as the \textbf{NOT} gate, but here either input can pull the output to ground; the output is only pulled up \textbf{HIGH} in voltage if both inputs are \textbf{FALSE} or \textbf{LOW}.

RTL works reasonable well and doesn’t suffer from the (cumulative) degradation problems of DL, because the output levels are set by the supply levels, not the inputs. However, DL is obsolete because the “return” to the high state when the transistors stop conducting is via the pull-up resistor. This transition is slow if there is a significant capacitive load on the output. (The \textbf{LOW} transitions when the transistors conduct are fast because the BJT collectors have effectively a very low impedance.)

10.4 The Real Thing: Transistor-Transistor Logic (TTL)

A common standard still in modern use is \textbf{transistor–transistor logic (TTL)}. The nominal convention is that $+5\, \text{V}$ is \textbf{TRUE}, and $0\, \text{V}$ is \textbf{FALSE}. The circuitry is somewhat more complicated, and we’ll go through the classic TTL \textbf{NAND} gate, shown below, as an example.
There are three different stages: the input stage (Q1), the phase splitter (Q2), and the totem-pole output (Q3, Q4, and the diode). An unusual feature is the double-emitter input transistor Q1. It works just like a regular transistor, except that a base current to either emitter will switch the collector current. Let’s trace the voltages through the circuit for two cases.

1. Suppose A or B is LOW. Then:
 - Q1 is ON (collector conducts to grounded input).
 - Q2’s base is LOW, thus Q2 is OFF.
 - Q3’s base is HIGH (pulled up by 1.6-kΩ resistor), thus Q3 is ON.
 - Q4’s base is LOW (pulled down by 1-kΩ resistor), thus Q4 is OFF.
 - The output is HIGH since it is pulled up via Q3 and the diode. The output is 5 V − Q3’s voltage drop − the diode drop, which works out to around 3.5 V.

2. Suppose A and B are both HIGH. Then:
 - Q1 is OFF (collector disconnected from inputs).
 - Q2’s base is HIGH (pulled up via the B–C path of Q1, which acts like a diode), thus Q2 is ON.
 - Q2’s emitter is pulled LOW by Q4, which is ON.
 - Q2’s collector is pulled LOW since it is ON; so Q4’s base is LOW, and Q3 is OFF.
 - The output is LOW since it is pulled down via Q4. The output is 0 V + Q4’s voltage drop, which works out to around 0.4 V.

The point of all this is to generate a few useful and general observations.

1. The inputs “want” to be high, because they tend to be pulled up to the power-supply voltage via the 4-kΩ resistor and the B–E paths of Q1. Thus, the inputs source current when they are pulled LOW. In particular, open inputs are HIGH by default in TTL, and less current flows (less power is dissipated) when the inputs are HIGH. In particular, if you have unused inputs in TTL circuits, it is best to tie them HIGH (i.e., connect them to +5 V).

2. The output, when driving another TTL input, must sink current, roughly \((5 \text{ V})/(4 \text{ kΩ}) = 1.25 \text{ mA}\). One output can drive multiple inputs, but there is a limit to this, because the output has a limited current capacity. This limit is called \textbf{fanout}, which is typically \(\sim 10\) inputs for a standard TTL output.
3. The output voltages don’t quite match the nominal values of 0 V and +5 V, so the TTL standard defines precisely the tolerance limits on signal voltages.

- TTL circuits must recognize anything from +2.0 V to +5 V as **HIGH**.
- TTL circuits must recognize anything from 0 V to +0.8 V as **LOW**.
- The intermediate range of +0.8 V to +2.0 V is **indeterminate**; TTL circuits can do anything with inputs in this range and still conform to the TTL standard.

10.4.1 TTL Nomenclature

Standard TTL chips are most famously grouped into the 74XX (or 74XXX) family. For example, there are:

- 7400: quad, 2-input **NAND** (i.e., 4 NAND’s per package)
- 7402: quad, 2-input **NOR**
- 7404: hex inverter (i.e., 6 **NOT** gates)
- 7408: quad, 2-input **AND**

and there are hundreds more, though many are now becoming obsolete. Note that these are also labeled as equivalent 54XX circuits, which are the military-grade versions.

These “classic” TTL circuits are now obsolete, but they still come in many popular “flavors.” These variations are labeled by a tag between the 74 and XX, for example 74LS00, 74F00, and 74HCT00 are all basically the same as the original 7400. The common flavors are:

- **L**: low-power (slow, obsolete)
- **H**: high-speed (high-speed, obsolete)
- **S**: high-speed Schottky (high-power, obsolete)
- **LS**: low-power Schottky (common, modern-standard chip)
- **AS, ALS**: “advanced” S, LS
- **F**: fast (gates have ~4-ns propagation delay vs. ~10 ns for standard gates)

10.4.2 CMOS

Another class of devices is **complementary MOSFET** (CMOS). These devices are similar to BJT logic devices, but are switched by voltage, rather than current (remember no current flows into the gate of a MOSFET). A side effect of CMOS designs is that they dissipate current while switching states, but not when “holding.” This feature makes CMOS generally power-efficient compared to TTL, and CMOS circuits take negligible steady-state input current (but of course are more susceptible to static discharge). CMOS devices are more flexible in terms of logic level, and can operate at **HIGH** voltages other than +5 V. There are separate CMOS logic families, but there are also CMOS variations of standard 74XX devices. For example, the flavors are:

- **C**: (e.g., 74CXX) operates from +3 to +15 V (compared to +5 V for standard TTL), with a nominal “trigger” point of ½ of the supply voltage.
- **HC**: high-speed CMOS
- **HCT**: high-speed, compatible levels with TTL (+5 V, and a low trigger voltage)
- **AC, ACT**: advanced CMOS (i.e., fast), ACT is the advanced HCT
10.5 Circuit Practice

As circuit practice, consider the circuit below. What kind of gate is this?

\[A \quad B \quad Q \]

\[+5V \]

Solution. Due to the arrangement of diodes, the only way to turn the transistor ON is to have one input HIGH and one LOW. In this case, the output is LOW; otherwise the output is HIGH. This, this is an XNOR gate.
10.6 Exercises

Problem 10.1

You have two switches (two-position switches; review how switches work if you need to!), a battery, a light bulb, and an infinite supply of wire. Devise a way to realize an XOR gate, where the switch positions are the inputs and the light bulb is the “output.” How about an XNOR gate?

Problem 10.2

You have three switches (two-position switches; review how switches work if you need to!), a battery, a light bulb, and an infinite supply of wire. Devise a way to realize the logic expression $A \cdot (B + C)$, where the switch positions are the inputs and the light bulb is the “output.”
Chapter 11

Multiplexers and Demultiplexers

11.1 Multiplexers

Simply put, a digital multiplexer (or MUX for short) is a logic device that maps one of many (digital) inputs to one (digital) output. You select which input to connect to the output using the “address” inputs. The multiplexer is the logic analog of a many-to-one mechanical rotary switch.

Multiplexers are useful devices. For example, you can use them to “pack” data from multiple sources (“parallel data”) onto a single “serial” transmission line (e.g., for phone or computer networks). They can also be used to sample or “poll” data from multiple sources, and ultimately allow scaling of many digital devices into modern computers. Multiplexers are examples of MSI (medium-scale integration) devices, “medium-scale” here meaning dozens of gates on 1 chip.

11.1.1 Example: 74151

An example of a multiplexer is the 74151 (which for example, with manufacturer and TTL-flavor codes would be something more like DM74LS151), an 8-input MUX, shown schematically below.

There are a number of features here:

- I_0–I_7 are the 8 inputs.
- A_0–A_2 are the 3 address lines, to select among the $2^3 = 8$ inputs; the idea is to select input n by setting $A_2A_1A_0$ to n in binary.
- Q is the output: the selected input is copied to the output.
- \overline{Q} is an inverted copy of the output.
- E or ENABLE (also called “STROBE”) is a “chip enable” line. If E is LOW, the chip works as we have described; if E is HIGH, then $Q = \text{LOW}$ $\overline{Q} = \text{HIGH}$, independent of the states of I_0–I_7 and A_0–A_2.

Another example of a common MUX is the 74150, a 16-input MUX (with 4-bit address).
11.2 Demultiplexers

A demultiplexer (or DEMUX for short) is the “opposite” of the MUX, in the sense that a single input is copied to a selected one of many possible outputs. Again, these are useful in, for example, packing and unpacking data to and from a transmission line via a MUX–DEMUX pair. Also a variation on the DEMUX is a decoder, which is the same as a DEMUX, but only selects the output, without copying any input (the “data” is effectively constant HIGH).

11.2.1 Example: 74138

A good DEMUX example is the 74138, a 1-to-8 DEMUX, as shown below.

To go over the features here:

- O_0–O_7 are the 8 outputs, Note that they are inverted (i.e., their “normal,” unselected state is HIGH).
- A_0–A_2 are the 3 address lines, again to select among the $2^3 = 8$ inputs in the same way as the MUX.
- E_1, E_2, and and E_3 are chip-enable inputs. The chip is enabled if $E_1 = E_2 = \text{LOW}$ and $E_3 = \text{HIGH}$. Then the operation is as follows.
 - If the chip is enabled, then the selected output O_j is LOW. (The others are HIGH.) In this case, the chip acts as a decoder.
 - If the chip is not enabled, then all outputs O_j are HIGH.
 - To operate this chip as a DEMUX instead of just a decoder, use E_1 or E_2 as a data input. In this case, the selected output copies E_1 or E_2, while the others remain HIGH. Alternately, E_3 can work as a data input, in which case the selected output copies E_3 (with the others still HIGH).

Another example of a common MUX is the 74154, a 16-output decoder/DEMUX (with 4-bit address).

11.3 Making a MUX

The logic underlying a multiplexer is not difficult to understand. There are two basic elements: a decoder and “routing” logic. As an example, let’s consider an 8-input multiplexer. The decoder, as we described, takes address inputs A_0–A_2, and sets the corresponding one of 8 outputs C_0–C_7 HIGH, with the others LOW. We can simply use AND gates to set each output when matching the correct address combination, as below.
To be more efficient in terms of gates, we would only use one NOT gate for each of A_0, A_1, and A_2, rather than NOT gates as shown, but the input NOT operations simplify the diagram.

The routing logic then has the algebraic form

$$Q = (C_0 I_0 + C_1 I_2 + \cdots)\overline{E},$$

(11.1)

if we include an ENABLE input.

11.4 Expanding a MUX (or DEMUX)

A useful technique is to combine MUXs into larger MUXs. For example given, 8×8-input MUXs, how do we make a 64-input MUX? This shows the real idea behind having chip-enable inputs: we will use the E inputs and an 8-output decoder, as shown below.

One detail that we have left out is that the Q outputs must be combined by an OR gate. An important alternative is to use chips with three-state logic. For these chips, the output is disconnected (high-impedance) when the chip is not enabled. In this case, you can just connect the chip outputs directly together, since only one chip will be enabled at a time. In this example, we can use the three-state alternative 74251 instead of the 74151.

11.5 Analog MUX/DEMUX

The same ideas behind digital MUX/DEMUX can apply to analog signals as well. An analog switch (or CMOS switch) is an electronic switch for analog signals, controlled by a digital input. An example is the DG412 quad SPST (normally open) analog switch. The switches are switchable electronically, e.g., from a computer-interface output. They are even good compared to mechanical switches in terms of noise: for example, you can run a digital control wire to the front panel from a circuit board rather than a signal line, and the noise pickup is not critical for a digital control line (it is easier to keep low-noise, critical signals on a well-grounded circuit board than to carry the signals on wires away from the board).

An analog MUX/DEMUX (in the analog case, these devices act as bidirectional devices, so there is no distinction between MUX and DEMUX) is an array of analog switches, controlled by address lines. This is really the analogue of a mechanical rotary-select switch. A good application here, for example, is to connect many sensors to a single microcontroller. An example of an analog MUX/DEMUX is the DG407, a dual 8-channel MUX.
11.6 Circuit Practice: Multiplexed Thermocouple Monitor

On the following pages, look over the schematic for a web-enabled thermocouple monitor.\footnote{\url{http://atomoptics-nas.uoregon.edu/~zoinks/#WebTC}} A few things to look over:

- There are provisions for 8 thermocouple inputs.
- The thermocouples are monitored by the AD594, which provides “ice point” compensation and buffers the thermocouple signal. However, this is a relatively expensive chip, so rather than having one for each thermocouple, we just use an analog multiplexer (IC1).
- The output is converted to digital via an analog-to-digital converter (IC3).
- The multiplexer address is controlled by an Ethernut microcontroller, which also reads out the ADC. The Ethernut has an ethernet port, and thus has firmware to make a web site to display the temperatures. It also controls an LCD display on the actual box.
WEB-ENABLED THERMOCOUPLE READOUT -- 1
D. A. STECK, P. GASKELL
Rev. D 4/18/09
11.7 Exercises

Problem 11.1

Show how to make a 4-input (digital) multiplexer from ordinary logic gates.\(^2\)

Problem 11.2

Look up the 74139. What is it? Show how to hook it up, using at most an extra inverting buffer, to make an 8-output decoder. Show how (by adding extra logic gates) to implement an 8-output DEMUX.

Chapter 12

Flip Flops

12.1 Flip-Flop Construction: SR Flip Flop

A flip-flop is relatively simple logic circuit that involves feedback (i.e., such that the output of a gate drives its own input, generally via other gates). Flip-flops are useful devices, and as we will see, they are the basis of digital memory.

The basic flip-flop is the SR flip-flop (“SR” for “set–reset”). A realization in terms of NOR gates is shown below.

To analyze this, let’s work out the truth table.

<table>
<thead>
<tr>
<th>S</th>
<th>R</th>
<th>Q</th>
<th>\overline{Q}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

A few things to notice here: First, there are two rows with inputs \(SR = 00 \), with different outputs. You should convince yourself that both are consistent with the circuit. In the first two rows, the fact that one input is HIGH fixes the state of the corresponding NOR gate, which then fixes the state of the other one. But in this multivalued, or bistable state, the inputs don’t fix the state of either gate. Rather, we have to assume that \(Q \) is in some state (i.e., it was set in this state in the past), which then fixes \(Q \). This bistable state is the defining characteristic of a flip-flop: it means there is hysteresis in the circuit, so that the state of the circuit “remembers” the past state. It is in this sense that a flip-flop can act as memory.

A second feature in the truth table is that the state \(SR = 11 \) is a “bad” state, since \(Q = \overline{Q} \), which means our output notation is in some sense itself bad. However, having the complementary outputs is convenient, even if nonessential. The more important problem with this state, however, is that the outputs don’t match either of the two “hysteresis states,” which we want to use as memory. So if we take the inputs from the bad state to \(SR = 00 \), it will collapse into one or the other hysteresis state in an ill-defined way, which is not very useful. Generally speaking, the bad state is to be avoided when using a flip-flop for its intended purpose.

Then this is how you use a flip-flop:
The inputs \(R \) and \(S \) are normally 0 (i.e., the flip-flop is in one of the memory states).

- Bringing \(S \) to 1 and back to 0 (the “set” operation) changes \(Q = 1 \) and \(\overline{Q} = 0 \). This state is “remembered” when \(R = S = 0 \).
- Bringing \(R \) to 1 and back to 0 (the “reset” operation) changes \(Q = 0 \) and \(\overline{Q} = 1 \). This state is “remembered” when \(R = S = 0 \).

12.1.1 Application: Debounced Switch

A simple application of the SR flip-flop is to make a debounced switch. Recall that switches are mechanical devices that make and break electrical connections. We can use a switch as in the schematic below to toggle between TTL HIGH and LOW.

That is, if the switch is open, the output is pulled up by the resistor to +5 V, while a closed switch corresponds to a 0-V output.

The problem is that the output will really look like the output shown for one open/close cycle. When we open the switch, the output goes HIGH with no problem, because the switch cleanly breaks the connection. However, when closing the switch, there is a problem. The contacts must close, and normally they are held together by some spring pressure. But when they close, one contact smacks into the other and “bounces” off of it, just like dropping a chunk of metal on a hard floor. The spring action pushes the contacts together again, and the result is a few extra, short pulses due to the switch bounce, typically on ms time scales.\(^1\) This is a real problem, for example, if the pulse is to drive the input of a counter. For example, the switch could be actuated by items on a manufacturing line, to count the number of items produced; it would obviously not be a very good count if there were several extra bounces for each item to count.

A simple solution to this uses a flip-flop and a slightly more complicated switch. Before getting to that, let’s introduce a functionally equivalent variant of the above RS flip-flop, now based on NAND gates.

The operation is the same as before, but note the inputs are \(\overline{R} \) and \(\overline{S} \), so their senses are inverted. That is, the “usual” input state should be \(\overline{R} = \overline{S} = 1 \). Then you bring \(\overline{S} \) momentarily to 0 to set the flip-flop (i.e., \(Q = 0 \)), and you bring \(\overline{R} \) momentarily to 0 to reset it. We will leave the analysis of this flip-flop as a circuit-practice exercise.

Now the debounced switch uses an SPDT switch (the “bouncy” switch used an SPST switch). The “up” switch state sets \(Q = 1 \), and the “down” switch state sets \(Q = 0 \).

During a bounce, the switch makes no connection to either contact, so both \overline{S} and \overline{R} are 1. This is the memory state, so the flip-flop holds the last switch state, which persists through the duration of the bouncing.

12.2 Clocked Flip-Flops

An important class of flip-flops, one step up in sophistication from the basic flip-flops above, is that of **clocked flip-flops**. A **clock** is an external, typically periodic logic signal that synchronizes signals in complex circuits. We will see some examples later, but in complex circuits, this synchronization is important in avoiding problems with race conditions. The idea in a clocked flip-flop is that the input datum is only accepted during a particular phase of the clock cycle, for example when the clock is **HIGH**. The clock then functions as a “gate” for the input data. An example of a clocked SR flip-flop is shown below.

Note that when the CLK signal is **LOW**, this guarantees that the flip-flop is in the memory state. We can write the truth table for this circuit as follows.

<table>
<thead>
<tr>
<th>S</th>
<th>R</th>
<th>Q_{n+1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Q_n</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>“bad”</td>
</tr>
</tbody>
</table>

Here, Q_n is the output state after the nth pulse. If S and R are **LOW**, then the flip-flop stays in the memory state, and the state Q_n persists to the next clock cycle. Otherwise, the clocking **NAND** gates act as inverters for the S and R inputs, so the inputs set and reset as usual (with momentary **HIGH** action), but only when the clock is **HIGH**.

12.2.1 D-Type Flip-Flop

An important class of clocked flip-flop is the **D-type flip-flop**, which is basically the clocked SR flip-flop, but where the two inputs are always in opposite states, as shown below. Here, the D or “data” input drives the S and R inputs oppositely.
The idea is that there is now only one input, and the flip-flop latches the value of the data while \(\text{CLK} \) is HIGH. This flip-flop is often called a data latch.

12.2.2 Edge-Triggered, D-Type Flip-Flop

A somewhat more sophisticated and realistic D-type flip-flop is the edge-triggered, D-type flip-flop. Here, “realistic” means you can buy these prepackaged (e.g., the 7474 gives you two of these per chip). The main difference is that the data-latching action happens on the rising edge of the \(\text{CLK} \) pulse. Since the edge has a short duration compared to the HIGH phase of the clock, the timing is more precise in this convention. Schematically, this flip-flop is shown below.

Some things to notice:

- \(D \) is the data input, as in the regular D-type flip-flop.
- \(\text{CLK} \) is the clock input. Again, the datum is latched on the rising edge. Schematically, it is common to indicate this by drawing an arrowhead on the edge of a sample clock pulse, as shown, and also to include a “\(\rightarrow \)” next to the \(\text{CLK} \) pin.
- \(Q \) is the output as usual, and \(\overline{Q} \) is an inverted output copy.
- \(S \) and \(R \) are “jam” set and reset inputs. These override the output, independent of the \(\text{CLK} \) state (so they work just like the inputs to the SR flip-flop). These are often called PRE and CLR (for preset/clear).

This flip-flop is good, for example, for storing data until they are “passed on” to a computer (e.g., in data-acquisition systems, when data arrive with timing determined by a physical system, but need to be loaded into a computer with its own timing).

12.2.3 JK Flip-Flop (Edge-Triggered)

A slightly more complicated variation on the edge-triggered, D flip-flop is the edge-triggered, JK flip-flop. This is like the D version, but there are two data inputs (\(J \) and \(K \)), with no indeterminate states for \(J \) and \(K \). This is available in the 74112/74112A (2 per chip), and the now-obsolete 7476/7476A (also 2 per chip). The flip-flop is shown schematically below.
The operation with the two new inputs is as follows.

- The CLK on this flip-flop, as drawn, triggers on the *falling* edge of the clock. Note the NOT circle on the clock input, and the sample clock pulse. This is how the 74112/74112A and 7476A work (the plain 7476 triggers on the positive edge). That is, this device is **negative-edge triggered**.

- If $J = 0$ and $K = 0$, then Q persists on the next CLK pulse.
- If $J = 1$ and $K = 0$, then $Q = 1$ on the next CLK pulse.
- If $J = 0$ and $K = 1$, then $Q = 0$ on the next CLK pulse.
- If $J = 1$ and $K = 1$, then Q **inverts** on the next CLK pulse (i.e., it “toggles”).
- \overline{S} and \overline{R} are still jam set and reset inputs.

12.3 Circuit Practice

For circuit practice, go through these three flip-flops.

(a) First, label the inputs and remaining output. This is the first one we did, but do this without peeking! Think through the whole truth table.

(b) Work out the equivalence of the (a) circuit to this one (i.e., label the inputs and outputs). Try **not** to use a truth table to do this, use a logic theorem to connect these.

(c) Work out the equivalence of the (b) circuit to this one (i.e., label the inputs and outputs). Try **not** to use a truth table to do this, use a logic theorem to connect these.
Solution.
(a) The labeled version is:

(b) This is basically the same circuit, but with all inputs and outputs of gates negated. Thus, the flip-flop inputs and outputs are similarly negated. The labeled version is:

Note that since we kept Q in the same spot, we had to swap the inputs as well.
(c) Using $\overline{A + B} = \overline{A\overline{B}}$, we simply change the negated-input OR gates to AND gates. The labeled version is:

12.4 Counters

One useful application of flip-flops is in realizing counters, which count input pulses by incrementing a binary output. The basic building block of a counter is the divide-by-2 counter, shown below in terms of a D-type flip-flop.

The timing diagram for this circuit is shown below. Note that transitions happen on the rising edge of the input (clock) pulses, and essentially the output is just toggling its output on each clock cycle. Hence the term “divide-by-2,” since the output pulse train oscillates at half the frequency of the input clock. More specifically, the flip-flop loads $D = \overline{Q}$ to Q on each rising pulse-edge.

Since the output is just toggling, recall that we can also make a JK flip-flop do this by tying both J and K inputs HIGH, as shown below.
12.4.1 Asynchronous (Ripple) Counter

Generalizing the divide-by-2 is relatively easy. For example, we can make a divide-by-4 counter by cascading 2 divide-by-2 counters, and by chaining 3 of them, we make a divide-by-8 counter. Chaining \(n \) counters realizes a divide-by-\(2^n \) counter, as shown schematically for D-type flip-flops below (first three bits are shown).

The timing diagram is shown below. Note that we changed the convention for the flip-flops, which now trigger on the falling edge of the clock pulse. (Why do we need to trigger on the falling edge? How would you modify the circuit if the flip-flops triggered on a positive edge?)

The main advantage of this circuit is that it is easy to build: it’s easy to chain together flip-flops. The main disadvantage is the asynchronous or “ripple” operation of the circuit: since there is a finite propagation delay of the logic signal through each flip-flop, it takes some time for each clock pulse to “ripple” through a long chain of a many-bit counter, which can cause synchronization problems for fast input signals (i.e., spurious output states may be present for some or even all the time).

12.5 Memory and Registers

Flip-flops act as single-bit memory devices, as we have seen. Combining flip-flops, we can build up registers, which act as multi-bit memories.

12.5.1 Register

The basic register is an array of D-type flip-flops, which synchronized CLK inputs, the idea being to latch all the bits at once (to avoid timing problems, e.g., as in the ripple counter).
Once latched, the register holds the output state, independent of the inputs, until the next clock pulse. One application is where a shared set of data logic lines drives several devices; a register at the input of each device can hold the relevant logic data for each particular device while the data lines drive other devices.

12.5.2 Shift Register

The shift register shifts the data among the outputs, shifting all bits in one direction on each clock cycle.

An example application is in converting serial data to parallel form (i.e., on the receiving end of a serial transmission channel). Also, note that a bit shift corresponds to a mathematical operation on binary data (divide/multiply by 2).

12.6 Circuit Practice

12.6.1 Pulse-Area Stabilizer

We have seen the circuit on the next page before in Section 6.11.5. To review is designed to work as follows.

To take photographs with a laser pulse, it is desirable to have the same exposure from each pulse. But the intensity of the laser drifts. Rather than try to stabilize the intensity of the laser, we can compensate for the drift by changing the duration of each laser pulse to compensate. By making the pulse area or integrated energy of each pulse the same, the photographs have exactly the same exposure, independent of the laser intensity.

Try to trace through the following features in the digital part of the circuit.

1. At the beginning of the pulse, the “pulse start trigger” input drives the CLK input of the D-type flip-flop (IC4a). Since the D input is tied HIGH, the Q output goes HIGH on the rising edge of this pulse, defining the beginning of the laser pulse.

2. The Q output is OR’d with the “pulse start trigger,” mainly to allow this input to override the flip-flop state, in case we want the laser to be on continuously for diagnostic purposes.

3. The pulse is finished when the integrated pulse area triggers the comparator IC3, when the inverting output goes low, triggering the CLK input of the flip-flop (which triggers on the falling pulse-edge).
4. The \overline{Q} output drives the MOSFET to reset the integrator after the pulse is finished, until the next pulse starts.

5. The propagation delay of IC5a is matched by the propagation delay of the OR gate on the \overline{Q} output (IC5b). This is not critical, but we have extra OR gates around anyway, and it ensures an accurate $t = 0$ for the integration.
Chapter 12. Flip Flops

PULSE AREA STABILIZER

12/15/07 D. A. Steck, J. J. Thoren
12.7 Sequential Logic and the State Machine

Recall in our discussion of asynchronous circuits (e.g., the ripple counter), we mentioned that there can be timing problems if the signals change rapidly, such that the gate delays are comparable to the time between transitions. The cure for this is to use synchronous circuits, where all logic transitions happen just after each clock pulse (or, more commonly and precisely, at an edge of each clock pulse). The transitions occur based on the logic levels present just before each clock pulse (edge). This is essentially what happens in a microprocessor, and this system of synchronous, clocked transitions is essential for high-speed and high-complexity logic systems.

The general scheme of sequential logic is shown in the diagram below.

![Diagram](diagram.png)

The first main ingredient is a register (Section 12.5.1), which is again an array of D-type flip-flops, with a common clock input. On the rising clock edge, the inputs \(D_j\) are all transferred to the outputs \(Q_j\), and then held.

The next main ingredient is a set of logic gates in some combination, which work to transform the outputs \(Q_j\) into new inputs \(D_j\). These can be implemented generically using PAL (programmable array logic) devices or PLA (programmable logic array) devices, which are basically configurable arrays of many logic gates. Also available are registered PAL/PLA chips, which contain flip-flops and gates all on one chip. These are usually called PLD’s (programmable logic devices).

Inputs and outputs to the logic gates also permit interaction with the outside world. The sequential logic scheme here is the most general form of digital logic, even though the idea is schematically simple.

12.7.1 Example: Synchronous, Divide-by-3 Counter

Continuing to follow Horowitz and Hill,\(^2\) we will illustrate sequential logic by constructing a synchronous, divide-by-3 counter. We will need two flip-flops (two bits to accommodate counting to 3), clocked from the counter input. We will call the register inputs \(D_0\) and \(D_1\) with corresponding outputs \(Q_0\) and \(Q_1\).

To design the counter, first we will choose the sequence of states that we want. There are no external inputs here, so this is just a simple sequence, with no conditions (which we would represent as extra bits here). The counting sequence is thus as follows:

\[
\begin{array}{ll}
Q_0 & Q_1 \\
0 & 0 \\
0 & 1 \\
1 & 0 \\
0 & 0
\end{array}
\]

Here, \(Q_0 \) functions (arbitrarily) as the MSB, and \(Q_1 \) the LSB. We have also shown the first step in the repeat.

The next step is to find the appropriate \(D \)'s. Remember the \(D \)'s must be our desired \(Q \)'s on the next step, so we will explicitly write out the desired \(D \)'s as a function of the \(Q \)'s.

\[
\begin{array}{cc|cc}
Q_0 & Q_1 & D_0 & D_1 \\
0 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}
\]

Finally we find a logic implementation of the functions \(D_j(Q_k) \), using whatever means necessary (e.g., Karnaugh maps). Here, by inspection we can see that

\[
D_0 = Q_1, \quad D_1 = \overline{Q_0} + Q_1.
\]

Thus, the circuit implementing the counter is shown below.

One more detail to worry about is the set of excluded states. For the divide-by-3 counter, we didn’t use the state \(Q_0Q_1 = 11 \), but what if the flip-flops end up in this state (e.g., when the circuit is turned on)? Given our logic realization, we will then have \(D_0 = 1 \) and \(D_1 = 0 \), so the counter will resume the normal counting cycle on the next cycle, with \(Q_0Q_1 = 10 \). But it’s important to consider these, since the register could end up “frozen” in an excluded state or a cycle of excluded states if the logic gates don’t handle them properly.
12.7 Sequential Logic and the State Machine

12.7.2 State Diagrams

A convenient way to represent the operation of a state machine is a state diagram. For example, the diagram (including the excluded state) for the divide-by-3 counter is shown below.

This is a directed graph of all the register states; the edges (arrows) show transitions between the states. You can use a diagram to start the design: you just begin with n flip-flops, where 2^n equals or exceeds the number of distinct states. Then you use the procedure that we used for the divide-by-3 counter to generate the appropriate logic.

If there are inputs, then there can be multiple possible transitions depending on the inputs. In this case, you can modify the diagram, labeling the transitions according to the input state. For example, below is a divide-by-3 counter with hold. That is, a “hold” bit H causes the counter to hold its state when $H = 1$ and counts as before when $H = 0$.

This example also illustrates “transitions” where the state remains the same. We will cover the implementation of this counter in Section 12.10.1.

Another example is the 2-bit up/down counter, where an input bit U controls whether the (divide-by-4) counter counts up or down.

12.8 Memory

When we introduced the flip-flop, we noted that it is the basic building block of memory, since it is a simple 1-bit memory device. Now we will talk about how to build up many flip flops into a memory device. First, however, we will refer to the (non-edge-triggered) D-type flip-flop from Section 12.2.1. Recall that this is as shown below.

An RS flip-flop (with momentary-low inputs) has two extra gates on the inputs and a clock signal, so that the flip-flop only accepts input from the data line D when $\text{CLK} = \text{HIGH}$. The clocked version of the flip-flop is essential in scalable memories. We will actually refer to a modified version of this circuit, shown below.

Here we changed notation so that the clock signal is now an “enable-low” (\overline{E}), and the flip-flop now accepts input only when $\overline{E} = \text{LOW}$. To keep things compact, we will refer to this circuit with the small block diagram below.

Now, modern computers can have GB of memory on the low end, easily exceeding 10^{10} flip flops. Obviously it would be awkward to have 10^{10} connections to a processor or other device from the memory, so how do we handle this? The answer is to go back to multiplexers and demultiplexers.

12.8.1 Example: 8×1-bit RAM

Below is an example arrangement for a memory circuit with “8×1-bit RAM.” This means

- There are 8 “slots” for 1 bit each of memory data (i.e., 1 flip-flop per slot).
- “RAM” means random access memory, meaning we can easily write and read data to and from any location in memory in any order (as opposed to sequential memory, as on a magnetic tape, or shingled magnetic storage on some modern hard disks).
- Flip-flop based memories like this are called static RAM (SRAM).

The circuit is shown below, with external connections (larger versions of this circuit would come packaged in a single integrated circuit with similar external connections).
There are a few elements worth noting.

- 8 flip-flops here do the actual storage.
- The address lines A_0–A_2 select which of the 8 flip-flops (slots) is active for either reading or writing.
- For larger memories, the address lines would select a register of flip-flops so more data can be transferred in parallel. For example, if the flip-flops were each 4-bit registers, we would have 8×4-bit RAM.
- The data input D is wired to all of the flip-flop inputs; the DEMUX only enables one flip-flop to accept data according to the address.
- The DEMUX must also be enabled by an enable input here WE, or write-enable-low. If this input is high, then no flip-flop is enabled for data input.
- On the readout side, all flip-flop outputs are fed into a single output via a single MUX, which is addressed by the same address lines as the DEMUX (which is not necessary, but saves address lines if we only want to read or write, but not both simultaneously).
- The output Q is buffered by a three-state buffer gate, which is enabled by the RE (read-enable-low) input. In this way, several memory chips can share the same output line(s), with only the selected chip attempting to assert a logical value on the shared data output line.

12.8.2 Example: 6116 SRAM

In an example that is more typical than the toy example above, the data input and output lines are the same. (Another reason to have a three-state output, so it does not conflict with incoming data.) A old classic, the 6116 SRAM chip, is still available;\(^3\) this is a 2-kB memory ($2\text{kB} = 2048 \times 8$ bits), and the connections are shown below.

Most elements are similar to the toy model above.

- The A_0–A_{10} lines form the address bus: 11 bits are necessary to address from 0–2047.
- The I/O_0–I/O_7 lines form the data bus, which can serve as inputs or outputs (i.e., reading and writing) for the stored data, 1 byte at a time.
- The chip-select-low input CS (i.e., chip enable) enables the action of the chip when LOW. Again, this is useful when several chips share the data bus, so only the enabled chip can write to the bus.
- The write-enable-low input WE enables the latching of the input data (the I/O lines act as inputs.
- The output-enable-low input OE enables the data lines to act as outputs.
- If $CS = \text{HIGH}$ or $WE = \text{LOW}$ or $OE = \text{HIGH}$, then the output buffers are in the high-Z state, again so the data busses of many chips can be connected together. (The address busses are also connected, but these need only act as inputs here.)

12.8.3 Other Memory Types

The SRAM above is the basic type of digital memory, but there are many other types. We will briefly review them here.

- **DRAM** (dynamic RAM) uses a small capacitor to store a bit of information as a charge state. The disadvantage is that because the capacitor leaks, it must continually be “refreshed” (on ms time scales), which greatly complicates the overhead circuitry. The advantage is that DRAM is cheap and highly scalable; DRAM is standard for large memory modules in modern computers.

- **SRAM** (static RAM) we have already talked about. Why do we want it? It is complicated to fabricate relative to DRAM, and is hard to scale to very large memory. However, it can be relatively power efficient (no refreshing is necessary), and due to the lack of refreshing overhead, it can be much easier to use in small projects. Note that while no refresh is needed, SRAM is volatile (the stored information vanishes when the circuit is not powered).

- **ROM** (read-only memory) is not intended to be written, just read. The data are written during manufacturing.
• PROM (programmable ROM) is ROM that can be written (once!) using special programming hardware, which burns fused connections inside the chip by applying relatively high currents.

• EPROM (erasable PROM) is PROM that is programmed electronically, and the programming can be erased (usually by exposing the IC to ultraviolet light, through a transparent window in the IC).

• EEPROM (electronically erasable PROM) is EPROM that can be erased electronically by the programmer (by applying high electric fields/voltages).

12.9 Circuit Practice: Memory

Explain the following statement, about connecting memory to a CPU:
With RAM you can scramble the address lines in any order; the same is true of the address lines. With ROM, you can’t!

12.10 State Machines with Memory

Before, in Section 12.7, we covered the basic scheme of sequential logic, reproduced below.

Again, the basic idea is to use a register to hold logic values, the outputs of which are transformed and fed back to the register inputs via a logic-array block. Here we will discuss implementing the logic-array block in a very general way by replacing it with memory, either RAM or ROM. In the ROM case, the state machine is suited for fixed operation (e.g., as a counter), whereas with RAM we have the possibility that the state machine can adapt to input and even reprogram itself.

The general idea for implementing state machines with memory is:

• We will connect the register outputs (Q’s), representing the present state of the machine, to the memory address lines (inputs).

• We will connect the register inputs (D’s), representing the future state of the machine, to the memory data lines (outputs).

• Any external inputs (needed for the state machine to react to anything external), correspond to extra memory address lines.
• Any external outputs correspond to extra memory data lines. It’s easiest to see how this works in an example.

12.10.1 Example: Divide-by-3-With-Hold Counter

As an example of a memory-driven state machine, consider the divide-by-3 counter with a hold input H, whose state diagram we considered before in Section 12.7.2.

In addition, as an example output bit, we will define a “zero” output bit Z to be 1 if the counter’s output bit is 00, and is 0 otherwise.

The truth table is as follows.

<table>
<thead>
<tr>
<th>(control)</th>
<th>(present state)</th>
<th>(future state)</th>
<th>(output)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>Q_1 Q_0</td>
<td>D_1 D_0</td>
<td>Z</td>
</tr>
<tr>
<td>0</td>
<td>0 0</td>
<td>0 1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0 1</td>
<td>1 0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1 0</td>
<td>0 0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1 1</td>
<td>0 0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0 0</td>
<td>0 0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0 1</td>
<td>0 1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1 0</td>
<td>1 0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1 1</td>
<td>1 1</td>
<td>0</td>
</tr>
</tbody>
</table>

In this system, there will be 3 address bits (HQ_1Q_2), for 8 memory slots, and 3 data bits (D_1D_0Z), so the size of the memory is $8 \times 3 = 24$ bits. The circuit to implement this is shown below.
All the logic in the truth table, of course, must be programmed into the ROM. Thus, for example, in address $A_2A_1A_0 = 000$, corresponding to $HQ_1Q_0 = 000$ in the truth table, we simply program in the value $D_1D_0Z = 011$, and so on for the rest of the 8 total memory locations.

12.10.2 General Considerations: Towards a Microprocessor

A few general remarks are in order. First, if there are no input bits, then basically we have some kind of counter (i.e., something that cycles through finitely many states, possibly with some outputs that are a boolean function of the state bits). If there is a single input bit, then it chooses between 2 possible actions (like the hold/count counter). If there are N input bits, then there are 2^N possible operations. This grows quickly with the number of bits: for 8 inputs there are already 256 operations. We can also store sequences of input bits, e.g., in RAM, for effectively many more different possible operations for the same number of input bits (i.e., there could be a 1-bit serial input to a state machine that controls many different possible actions by using different sequences of input bits). These stored bit sequences in RAM correspond to a “program,” with 256 “instructions” in this 8-bit example, for a simple realization of a microprocessor. The input/output lines are connected to the data/address busses, which are also connected to input/output devices or interfaces. Real microprocessors often have more specific functionality, sophisticated instruction sets (with instructions that can take multiple clock cycles to complete), and have registers organized in more sophisticated ways than we have indicated here, but we still have the essence of a microprocessor.

12.10.3 Programmable ROM as Logic

We have talked about replacing logic blocks with ROM, but we can think of ROM itself as a general array of gates, particularly the various forms of PROM. For example, consider the 8×1-bit memory shown below.
The main grid of lines is intended as a configurable grid, where we can make whatever connections we like. Then there are two ways to think of this. First, because the inputs go first into AND gates and then into an OR gate, we can realize Boolean-logic expressions if they are sum-of-product expressions. For example, we can realize

$$O_0 = A_0 \overline{A_1} A_2 + \overline{A_0} A_1 A_2$$

by making the connections shown below.

The default of the unconnected inputs is 0.

The other way to think of this particular example, is that this is a memory that stores the value 1 in the addresses $A_0A_1A_2 = 101$ and $A_0A_1A_2 = 011$, and 0 in all the others. Thus we can store any value in any location by making proper connections for all locations that store a 1. This is why we need 8 AND gates in this example—one to “recognize” each possible set of inputs, if needed. (Of course, they are not all used unless all the stored bits are 1.) In (“write-once”) PROM, these connections are all made at the factory, and the undesired connections are “burned” away by flowing high current through the programable fuses at each connection point.
Diagrams like this get to be complicated for larger memories, so they are often abbreviated by “collapsing” all the input lines for a given AND gate, as illustrated below. This circuit realizes the same example expression as the previous one.

In this way, we can draw out more complicated memories, like this 3 × 3 memory.

12.10.4 Programmable Logic Devices

Programmable logic devices (PLDs) are chips that contain a register and PROM-type logic arrays like the ones we have shown above. Generally speaking, they do not have sufficient gates to implement arbitrary logic combinations (i.e., they generally have fewer than necessary AND gates), but they have enough to program a wide range of logic possibilities. Example of simple, but currently available, PLDs are the 22V10 SPLD, or simple PLD (e.g., the ATF22V10C from Atmel), with 12 dedicated input pins, 10 pins configurable as inputs or outputs, 10 D-type flip-flops, and a gate array (10 OR gates, with 10-16 AND gates feeding each OR gate. The flip-flop outputs can be connected to their corresponding output pins, or the flip-flops can be bypassed altogether for non-registered outputs. A more powerful example is the ATF750C CPLD, or complex PLD from Atmel, which has the same pin configuration, but provides more gates, and 10 extra “internal” flip-flops that can be used as internal register variables that are not connected directly to outputs.
12.10.5 Circuit Practice: Divide-by-2-or-3 Counter

As practice with state diagrams, draw the state diagram for a divide-by-2-or-3 counter. That is, the counter counts differently based on an input bit \(p \), and the counter counts \(00 \rightarrow 01 \rightarrow \text{repeat if } p = 0 \), and \(00 \rightarrow 01 \rightarrow 10 \rightarrow \text{repeat if } p = 1 \). Make sure to handle the excluded state.

Solution. The diagram is sketched below.

![State Diagram for Divide-by-2-or-3 Counter](image.png)
12.11 Exercises

Problem 12.1

(a) What is the essential property of a flip-flop?
(b) Does the circuit below behave as a flip-flop? If so, label the inputs and outputs in flip-flop notation. If not, explain why not.

Problem 12.2

Show how to make an RS flip-flop (with both normal and inverted outputs) using an AND gate, an OR gate, and an INV gate. (First try hooking up the AND and OR as in the usual flip-flop configuration, and then it should be more obvious where the INV should go.) Analyze your circuit to show that this behaves as a flip-flop. What is the “bad” input state?

Problem 12.3

Recall that the 74139 is a 2-bit, 4-output decoder/DEMUX, 2 per package, with 1 inverting enable per decoder. Does the circuit below behave as an SR-type flip-flop (with respect to the labeled inputs/outputs A, B, C, and D)? If so, label the inputs and outputs in flip-flop notation (\(S, R, Q, \overline{Q}\)). If not, explain how to change the circuit wiring to make it operate as a flip-flop, and label the inputs and outputs in flip-flop notation.

Problem 12.4

A T flip-flop has a single (“T”) input, which causes the output \(Q\) to toggle if the \(T = \text{HIGH}\), and to hold if \(T = \text{LOW}\). The truth table and schematic diagram are shown below (\(Q_n\) is the output state \(Q\) after the \(n\)th clock pulse).

\[
\begin{array}{c|c|c}
T & Q_n & Q_{n+1} \\
0 & 0 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0 \\
\end{array}
\]
(a) Show how to connect the JK flip-flop below as a T flip-flop.

(b) Show how to connect the D flip-flop below as a T flip-flop. You will need to use one additional gate.

Problem 12.5

(a) Show how to connect 3 JK flip-flops to make a 3-bit ripple counter, and then show how to add a single 2-input NAND gate to change this to a **modulo-5** counter—that is, the counter resets to zero when the output reaches 5, and continues counting.

(b) Show how to design a (ripple) counter that counts from 0 to 5 and then stops. Your circuit should include a **RESET** input that resets the counter back to zero (and then continue counting) after a negative pulse.

(c) Show how to design a circuit that passes only 5 (positive) pulses and blocks subsequent other pulses, after a negative reset pulse that “arms” the circuit.

Problem 12.6

(a) Show how to connect 3 flip-flops to make an asynchronous (ripple), 3-bit **down** counter. To be specific, use 7474 flip-flops (dual D-type, positive-edge-triggered, with complementary outputs and jam preset and clear), whose connections are shown below.

Recall that for the jam inputs, “preset” is the same thing as “set,” and “clear” is the same thing as “reset.”

(b) Show how to realize an **asynchronous, divide-by-5 down counter**, made from the same D-type flip flops. That is, your counter should count 4, 3, 2, 1, 0, 4, 3, 2, 1, 0, . . .

Problem 12.7

Consider the asynchronous counter circuit shown below.
(a) Why is this circuit “asynchronous” and not “synchronous”?

(b) Assuming the counter starts in the state $O_1O_0 = 00$, give the truth table for the counter output on subsequent clock cycles.

(c) Can this counter get “stuck” in any particular state? Why or why not?

(d) What kind of counter is this?

Problem 12.8

Recall that the 7490 is a decade counter, with clock inputs that trigger on falling edges. Below are two ways to connect the 7490 as a divide-by-10 counter. However, they are not equivalent. What, specifically, is the difference in the output waveforms? (Be quantitative.) Also, remember Q_B is the least significant bit of the divide-by-5 subcounter.

Problem 12.9

Design a synchronous 2-bit UP/DOWN counter: It has a clock input, and a control input (U/\overline{D}); the outputs are the two flip-flop outputs Q_1 and Q_2. If U/\overline{D} is HIGH, it goes through a normal binary counting sequence; if LOW, it counts backward—$Q_2Q_1 = 00, 11, 10, 01, 00, \ldots$.

Problem 12.10

Design a synchronous, 3-bit Fibonacci counter (i.e., count through the Fibonacci numbers 0, 1, 2, 3, 5, and then repeat). Use three flip-flops (of the 7474 type, as shown above) and whatever gates you

like. Be sure to show a state diagram, *including* all excluded states. Can your counter get “stuck” in any excluded state?

Problem 12.11

Design a synchronous divide-by-3 circuit using two JK flip-flops. It can be done (in 16 different ways) without any gates or inverters. One hint: When you construct the table of required J_1, K_1 and J_2, K_2 inputs, keep in mind that there are two possibilities for J, K at each point. For instance, if a flip-flop output is to go from 0 to 1, $J, K = 1, X$ (X = doesn’t matter). Finally, check to see if the circuit will get stuck in the excluded state (of the 16 distinct solutions to this problem, 4 will get stuck and 12 won’t).

Problem 12.12

(a) (15 points) Design a synchronous circuit (state machine) using flip-flops and logic gates that makes a 4-bit “Knight-Rider” pattern. That is, the output counts:

- 0001
- 0010
- 0100
- 1000
- 0100
- 0010

(repeat).

Don’t draw the circuit, just come up with the required logic expressions. *Hint:* there are 4 bits shown here, but you will need an extra bit to keep track of the direction.

(b) (10 points) Of course, if the Knight Rider car is driving down the street with the lights stuck in an excluded state, it would be less than awesome. Either show that your circuit doesn’t get stuck in excluded states, or show how to modify your circuit to make sure that your circuit settles into the above pattern for any starting state. Use whatever logic you like (again, no circuit, just the required logic).

Problem 12.13

Analyze the circuit below by drawing a timing diagram for the outputs. Assume that the initial state is $ABCD = 0111$, and analyze the circuit output for 5 clock pulses.

Problem 12.14

Design a synchronous, divide-by-16 counter. Just give Boolean expressions for the required logic; no need to draw a circuit schematic. (Write your output bits as $Q_3Q_2Q_1Q_0$ from MSB to LSB.)
Problem 12.15

Design a circuit that combines 4 of the 6116 SRAM IC’s (2k×8-bit) to make a single, 4k×16-bit memory. The resulting circuit should have the same behavior as one of the original 6116’s, just with more address/data bits.

Problem 12.16

A 3-bit register and an 8 × 3 ROM are connected as shown below.

The ROM is programmed as follows:

<table>
<thead>
<tr>
<th>(A_2)</th>
<th>(A_1)</th>
<th>(A_0)</th>
<th>(O_2)</th>
<th>(O_1)</th>
<th>(O_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Assume that the initial state of the register is \(Q_2Q_1Q_0 = 010\).

(a) Give the state of the register outputs \(Q_2Q_1Q_0\) after each of the next three clock pulses.

(b) Even after arbitrarily many clock pulses, (at least) one possible value of \(Q_2Q_1Q_0\) will never occur. Which?
Chapter 13

Comparators

13.1 Overview and Review

We talked before about comparators in the context of analog electronics in Section 6.9. There, comparators were variations on the basic op-amp, which compares two analog input voltages, and outputs something like a 1 or 0, depending on the comparison. Here, we will review and extend our discussion of comparators, because in the context of digital electronics, comparators are the fundamental way to interface analog to digital circuits. For example, they form the fundamental building block of the analog-to-digital converter (ADC). They also represent a basic method for generating logic pulses (generally, the pulse timing is based on an analog signal, such as an RC decay). Also, comparators allow you to do “level translation” between different logic types (e.g., interfacing high-voltage logic to TTL).

13.1.1 Example: TL3016

As an example of a comparator that is really optimized for driving logic circuits, consider the TL3016 (or LT3016) fast comparator (“fast” here means a 7.6-ns propagation delay). This comparator and its pin connections are shown schematically below.

![Comparator schematic](image)

This comparator has both regular and inverted outputs, and the outputs are TTL-compatible. To summarize the regular operation:

- if $V_{in+} > V_{in-}$: $Q = \text{HIGH}$, and $\overline{Q} = \text{LOW}$
- if $V_{in+} < V_{in-}$: $Q = \text{LOW}$, and $\overline{Q} = \text{HIGH}$

- here, “HIGH” means nominally around +5 V (actually, about +3.8 V)
- and “LOW” means nominally around 0 V (actually, about +0.6 V)
- for proper operation, the inputs should be in the range of the supply voltages; the positive supply V_{CC+} is a +5 V, while the negative supply V_{CC-} is either 0 V or −5 V
- the “LE” pin is a “latch enable”, which latches the output when held HIGH
13.2 Open-Collector Output

A common configuration for comparator outputs (and logic-gate outputs, too) is the open-collector output. We discussed this before in Section 6.9, but we will review the basic idea here.

First, we should review the basic switch-type operation of the bipolar transistor. The transistor acts as a switch for current, based on another current. The two important currents are I_B from the base to the emitter, and I_C from the collector to the emitter.

![Diagram of bipolar transistor](image)

The base current I_B acts as the control current, and I_C is the current to be switched. Simplistically, if there is some current I_B, then I_C can flow, so the C–E path acts as a closed switch.

![Diagram showing C–E path as closed switch](image)

However, if $I_B = 0$, then the C–E path acts as an open switch. There are some extra voltage drops to consider here, but as in RTL logic (Section 10.3), this simple model is sufficient to understand open-collector outputs.

An inexpensive and popular comparator with open-collector output is the LM311 (also LF311, henceforth just the “311”). Schematically, this comparator is shown below, with a typical “pull-up resistor” to $+5\,\text{V}$ on the output.

![Schematic of comparator with open-collector output](image)

Not shown here are power-supply connections (to supplies of up to $\pm 18\,\text{V}$). The inputs must stay within the supply-voltage range. To summarize the operation here:

- if $V_{\text{in}+} > V_{\text{in}-}$: the transistor is OFF, and $V_{\text{out}} = +5\,\text{V}$
- if $V_{\text{in}+} < V_{\text{in}-}$: the transistor is ON, and $V_{\text{out}} = 0\,\text{V}$ (actually, about 0.2 V or higher)
The point of the open-collector output is its flexibility: it’s not restricted to particular voltages like the outputs of normal TTL gates. For example, the 311 can drive loads up to 40 V and 50 mA, so it can directly control LEDs, lamps, relays, and so on. By contrast, a TTL-gate outputs would need a buffer transistor.

Another feature of the 311 is a TTL strobe input. A typical connection for this pin is shown below.

If the strobe input is held HIGH, then the output is disabled: the output is HIGH (i.e., the output transistor opens), and the comparator ignores the inputs. This is useful for “gated” operation, if the comparator should only trigger during some time interval or some condition determined by other logic.

13.3 Schmitt Trigger

We also discussed the Schmitt trigger in the context of analog circuits before in Section 6.9.1. We will review the basic idea again here, since these are so important in digital applications that many logic devices have integrated Schmitt triggers.

The motivation for the Schmitt trigger comes from noisy inputs signals. Typically, these are slowly changing analog signals, but even “digital” signals are fundamentally analog, and are thus similarly susceptible to noise. As illustrated below, a noisy signal that is rising and falling can cause many spurious transitions while crossing the threshold.

Ideally, with a noise-free signal, the output (shown in the bottom plot) would have one up transition, then later a down transition, and then an up transition again, instead of the many clustered around the three “ideal” trigger times.
Chapter 13. Comparators

To analyze the fix for this, we will briefly review the voltage divider (see Section 1.3.3 and Problem 2). Given a series pair of resistors supplied by V_{in}, the output voltage at the tap point is given in terms of the “fractional resistance” at the tap point.

$$V_{out} = \left(\frac{R_2}{R_1 + R_2} \right) V_{in}$$

If there are two voltages at either end of the resistor pair, the output voltage is a linear combination of the two voltages, given by the fractional resistances:

$$V_{out} = \left(\frac{R_2}{R_1 + R_2} \right) V_{in} + \left(\frac{R_1}{R_1 + R_2} \right) V_{ref}$$

We can deduce the second result from the first by subtracting V_{ref} from all voltages, and applying the first (grounded) result, to give

$$V_{out} - V_{ref} = \left(\frac{R_2}{R_1 + R_2} \right) (V_{in} - V_{ref}).$$

Rearranging gives the result in the figure. Note: you should memorize both of these voltage-divider formulas, and be able to quickly come up with resistor combinations that divide a voltage by 2, 3, etc.

Now consider the following circuit, which is a comparator with two added resistors. One resistor is in series with the “trigger voltage” V_{ref}, and another, large resistor ties the output to the noninverting input.
The extra resistors introduce hysteresis into the operation of the comparator as follows.

- if \(V_{out} = 0 \), \(V_+ \) (the voltage at the noninverting input) is \(0.99 \, V_{ref} \), using the first voltage-divider formula.
- if \(V_{out} = +5 \, V \), \(V_+ = 0.99 \, V_{ref} + 0.01 \cdot 5 \, V \), using the second voltage-divider formula.

Thus, the reference voltage changes by about 50 mV, depending on the output. Notice that

- if \(V_{in} = \text{HIGH} \), the trigger point is lower
- if \(V_{in} = \text{LOW} \), the trigger point is higher

So \(V_{in} \) “repels” the trigger point, which gives immunity to noise. The hysteresis of the Schmitt trigger is sketched in the output-response plot below.

Note that the Schmitt trigger is bistable in the 50-mV-wide region near the nominal trigger voltage \(V_{ref} \). Thus, once the Schmitt trigger makes a transition, noise of less than around 50 mV will not cause another spurious transition.

Note that the configuration above is inverting, since \(V_{in} \) goes into the inverting input (i.e., large \(V_{in} \) means the output is \(\text{LOW} \)). For a noninverting comparator, you can swap the \(V_{in} \) and \(V_{ref} \) labels, but note that the input is no longer well-isolated from the input, which may be a problem if the input source has high impedance.

In digital circuits, many gates and logic devices are available with Schmitt-trigger inputs. An example is the 7414, a hex Schmitt-trigger inverter. This is shown schematically below.

Note the Schmitt-trigger symbol on the gate, which suggests the hysteresis curve. Schmitt-trigger-input gates are good for signals without well-defined edges (like a sinusoidal input), or signals from an external source with a long cable run, which could be susceptible to noise pickup.

13.3.1 Example: Analog-to-Digital Clock-Signal Conversion

As an example application of a Schmitt trigger, consider the conversion of an analog clock signal to a digital clock. An example of an analog clock source is a rubidium atomic clock, a relatively inexpensive (few $K) instrument that typically provides a 10-MHz sine wave, with a stability/accuracy of better than a part in \(10^{10} \). To drive digital circuits, however, this should be converted into an appropriate square wave with logic-level inputs. The circuit below accomplishes this, using a Schmitt trigger to avoid spurious extra clock pulses due to noise on the clock signal.
Note the ac-coupled input, a 50-Ω-terminated input (as appropriate for a 50-Ω cable connecting the clock to this circuit), and the Schmitt trigger, with TTL-compatible output. The clock offset and threshold voltages are adjustable to account for different input clock amplitudes, and to adjust the duty cycle of the resulting square wave (typically, these can both be set to 2.5 V).

13.4 Circuit Practice

For practice with comparators, first note that you can light an LED with a power supply and a current-limiting resistor as follows.

Thus, an open-collector output can control the LED, since the output is either open or shorted to ground (corresponding to an OFF or ON LED, respectively).

Now design a “TTL out-of-range alarm,” given the following components and requirements:

- two 311’s
- any resistors you like
- an LED
- ±15-V power supplies (and ground)
- the circuit operates as follows: if $V_{in} > +5\, \text{V}$ or $V_{in} < 0\, \text{V}$, the LED “alarm” lights; otherwise, the LED is off
Solution.
13.5 Exercises

Problem 13.1

(a) Show that the comparator circuit below acts as a flip-flop (“bistable multivibrator”). Label the set and reset inputs.

(b) Show how to add another (311) comparator to also produce the \overline{Q} output. (Use whatever resistors you like.)

Problem 13.2

Briefly describe how a Schmitt trigger in an input of a logic gate can improve the performance of a circuit. Under what conditions on the input signal do you expect an improvement?
Chapter 14

Pulse and Waveform Generation

14.1 The Classic 555 Timer

The 555 timer is an old, classic workhorse for timing and pulse-signal generation, in applications that require moderate accuracy (1%) and relatively slow signals (good performance up to a few hundred kHz, and can be pushed up to $\sim 1\text{MHz}$. It’s a versatile chip, and can produce square waves, arbitrary-length pulses, and can perform more complicated tasks such as pulse-width modulation—there is a lot of functionality packed into this 8-pin chip.

14.1.1 Equivalent Circuit

The functional equivalent circuit for the 555 chip is shown below, with pin assignments for an 8-pin DIP package.

A few things to notice here:

1. V_{cc} powers all the components in the chip. The output is TTL compatible when $V_{cc} = +5\text{V}$, but V_{cc} can go up to $+18\text{V}$. The minimum for the standard chip is $+4.5\text{V}$, but some CMOS variants can make use of lower voltages (e.g., $+2\text{V}$ for the ICL7555, $+1\text{V}$ for the TLC551). The GND (ground) input sets the ground reference for the circuit.

2. V_{cc} also drives a resistor divider chain, which sets voltage-reference points at $(2/3)V_{cc}$ and $(1/3)V_{cc}$.
Chapter 14. Pulse and Waveform Generation

The \texttt{CONT} (control) input taps into the \((2/3)V_{cc}\) point, and can be used as an "override" for the reference voltages.

3. Two comparators compare two input voltages (\texttt{THRES} or threshold, and \texttt{TRIG} or trigger) to these reference voltages.

4. The comparator outputs drive the inputs of an SR flip-flop. The flip-flop also has an externally connected, direct-reset input (\texttt{RESET}).

5. The output of the flip-flop is buffered and set to the \texttt{OUT} port. The standard 555 (NE555) has a lot of “oomph,” and can handle \(\pm 200\) mA of current. Note that “setting” the flip-flop takes the output \texttt{HIGH}.

6. The flip-flop output also connects to the base of an open-collector, NPN transistor, whose collector is the \texttt{DISCH} (discharge) output. This output is useful, for example, for dumping the charge of a timing capacitor. In this case, “resetting” the flip-flop will turn the transistor on (i.e., capacitor charge gets dumped), setting the flip-flop will turn the transistor off.

14.1.2 Astable Multivibrator

A typical 555 circuit is shown below. This is called an \textit{astable multivibrator}, which just means that the output is a square wave, whose timing is set by the external components.

\begin{center}
\textbf{555}
\end{center}

\begin{itemize}
\item \texttt{Vcc}
\item \texttt{RESET}
\item \texttt{DISCH}
\item \texttt{OUT}
\item \texttt{optional bypass}
\item \texttt{output (TTL compatible)}
\item \texttt{5}
\item \texttt{optional bypass}
\item \texttt{GND}
\item \texttt{1}
\item \texttt{R}\texttt{1}
\item \texttt{R}\texttt{2}
\item \texttt{C}
\item \texttt{7}
\item \texttt{6}
\item \texttt{2}
\item \texttt{4}
\item \texttt{8}
\end{itemize}

Let’s analyze how this works:

1. The bypass capacitor at pin 5 (\texttt{CONT}) helps to stabilize the reference voltages in the resistor chain. One problem with the 555 is that it can cause large power-supply transients while switching, which can feed into the reference chain and cause multiple (unintended) transitions and glitching, and a capacitor here helps to fight these problems. It’s a good idea to bypass pin 8 (\texttt{Vcc}) with a large capacitor as well.

2. The main timing of the square wave is controlled by charging and discharging the capacitor \(C\). The capacitor charges from \(V_{cc}\) via \(R_1 + R_2\), while the capacitor discharges only via \(R_2\) to pin 7, when the transistor is on and this pin is connected to ground.

3. We will assume that the capacitor is initially uncharged. Note that as long as \texttt{THRES} (pin 6) is below \((2/3)V_{cc}\), the corresponding comparator output is \texttt{LOW}, which does not reset the flip-flop. The other comparator sets the flip-flop since the capacitor voltage at pin 2 (\texttt{TRIG}) is below \((1/3)V_{cc}\). This sets the output \texttt{HIGH} and turns the transistor off, so the capacitor charges via \(R_1 + R_2\).

4. When the capacitor voltage reaches \((2/3)V_{cc}\), the flip-flop gets reset by the \texttt{THRES} comparator, setting the output \texttt{LOW} and turning the transistor on, shorting pin 7 (\texttt{DISCH}) to ground.

5. The capacitor discharges through \(R_2\) until the voltage drops to \((1/3)V_{cc}\), when the flip-flop sets again, and the process repeats.
6. For either phase, we can use the exponential relaxation of the RC circuit to figure out the times in each state. For the output LOW-output phase, the capacitor voltage relaxes exponentially (with time R_2C) from $(2/3)V_{CC}$ towards 0 (neglecting the small collector-emitter voltage across the discharge transistor). That is, the capacitor voltage is

$$V(t) = \frac{2}{3}V_{CC} e^{-t/R_2C}, \quad (14.1)$$

and if we set $V(\tau_{\text{low}}) = (1/3)V_{CC}$, where τ_{low} is the LOW-cycle time, we get

$$\tau_{\text{low}} = (\log 2)R_2C \approx 0.693 R_2C. \quad (14.2)$$

Note that “log” here is the natural logarithm.

7. For the output HIGH-output phase, the capacitor voltage charges exponentially [with time $(R_1 + R_2)C$] from $(1/3)V_{CC}$ towards V_{CC}. Note that, except for the time constant, this is the same as the LOW phase, except for an inversion and a shift in voltage. Thus, a similar result applies, with

$$\tau_{\text{high}} = (\log 2)(R_1 + R_2)C \approx 0.693 (R_1 + R_2)C \quad (14.3)$$

as the high-time dwell state. Note that $\tau_{\text{high}} > \tau_{\text{low}}$ (note that we can’t have $R_1 = 0$, otherwise the discharge transistor would attempt to short V_{CC} to ground—not a good idea.

8. The oscillation period is then

$$T = \tau_{\text{low}} + \tau_{\text{high}} = (\log 2)(R_1 + 2R_2)C \approx 0.693 (R_1 + 2R_2)C. \quad (14.4)$$

Note that V_{CC} dropped out of this expression, which is convenient, since it means the timing is insensitive to the power-supply voltage. Of course, we assumed that the power supply is constant; if V_{CC} varies on the time scale of the period, such that the voltage is differs between successive transitions, then V_{CC} doesn't drop out of the period. Hence, again, the importance of a bypass capacitor for the power supply.

9. Of course, there are some limitations to what is possible with the above timing. Lancaster recommends: $R_1 + R_2 \leq 3.3 \text{ M}\Omega$, $R_1, R_2 \geq 1 \text{ k}\Omega$, $C \geq 500 \text{ pF}$. The capacitor can be large, but the RC times may ultimately be limited by capacitor leakage, but hours-long periods are possible.

10. A nearly symmetric square wave results if $R_1 \ll R_2$, but if the asymmetry is a problem, the oscillator frequency can be doubled, and the output fed through a divide-by-two circuit, resulting in a symmetric wave, independent of the initial asymmetry (why?).

14.1.2.1 Frequency Modulation

A variation on this circuit is to use the CONT input to modulate the $(2/3)V_{CC}$ reference point, which modulates the frequency (raising the reference voltage = longer time to trigger the comparator = lower frequency). A coupling capacitor makes the frequency modulation more convenient, as a zero voltage corresponds to no modulation.

14.1.2.2 Pulse-Width Modulation: LED Dimmer

The asymmetry of the 555 output is sometimes useful, as in pulse-width modulation. You can control the brightness of an LED by controlling the supply current; however, if the LED is driven by a fixed-voltage, digital output, this isn’t feasible. The solution is to blink it rapidly on and off, and vary the fraction of time it is on (i.e., vary the duty cycle—the fraction of the period where the signal is HIGH—of the pulse). The 160Ω resistor here sets the LED current to 20mA, assuming a 1.8-V drop across the LED (as appropriate for a standard red LED), and assuming the output goes down to 0V (almost true). The component values give a minimum frequency of about 1.3kHz (plenty fast to make the LED appear continuous—it should be over about 50Hz), and the duty cycle varies from a maximum of about 50% down to a minimum of about 0.4%. (Note that the LED is on when the output is LOW.) This is also an efficient dimming scheme, which is why it is so common: restricting the current generally requires some wasted power, due to power dissipated in a current-limiting resistance. In this circuit, the efficiency is roughly the same at any value (neglecting power dissipated due to output transitions).

14.1.3 Circuit Practice: Duty Cycle

What is the duty cycle of the basic astable circuit (reproduced below)?

What is the duty cycle of the modified astable shown below? (Ignore any voltage drops across the diodes.) How does it allow better control over the duty cycle?
Solution. With this arrangement, the capacitor charges through R_1 and the left-hand diode, and discharges through R_2 and the right-hand diode. In either case, we can work out the timing as follows. Suppose the capacitor discharges from voltage $(2/3)V$ towards zero, with time constant RC. We need to solve for the time τ when the capacitor voltage is $(1/3)V$:

$$\frac{2}{3} V e^{-\tau/RC} = \frac{V}{3}. \quad (14.5)$$

The solution is

$$\tau = (\log 2)RC. \quad (14.6)$$

The HIGH output cycle is the charging cycle, so the high time is

$$\tau_{\text{HIGH}} = (\log 2)R_1C. \quad (14.7)$$

The LOW output cycle is the discharge cycle, so the high time is

$$\tau_{\text{LOW}} = (\log 2)R_2C. \quad (14.8)$$

The period is the sum of these, or

$$T = (\log 2)(R_1 + R_2)C. \quad (14.9)$$

14.2 Monostable Multivibrators

A monostable multivibrator, or one-shot, is a circuit that simply supplies a single digital pulse of some defined duration. This is the fundamental building block of timing circuits—circuits that control the timing of sequences of events (laser pulses, data acquisition, camera triggers, etc.).

14.2.1 555 as a One-Shot

The 555 can be conveniently hooked up as a one-shot. Recall the internals of the 555:
The connection as a one-shot is shown below. Again, the timing is set by the external components.

Let’s see how this works:

1. The TRIG input is normally high, which is consistent with the internal flip-flop being reset, and thus the output being LOW. In this case the transistor is on, so the capacitor is shorted to ground. We will assume all this to be the case; if the flip-flop is indeed set, it is as if the circuit has been triggered, and the circuit will go through the rest of the cycle and reset, and then we can proceed with the assumption of a reset flip-flop.

2. The negative edge of a trigger pulse starts the output pulse. This happens when the TRIG input crosses below \((1/3)V_{CC}\), and the lower comparator sets the flip-flop. This takes the output HIGH, and turns the transistor off.

3. The timing of the output pulse is controlled by charging the capacitor \(C\). The capacitor charges from \(V_{CC}\) via \(R\).

4. The capacitor is uncharged at the beginning of the pulse, and it will charge until the capacitor voltage (and thus THRES input) rises to \((2/3)V_{CC}\). At this time, the upper comparator resets the flip-flop, ending the pulse and dumping the capacitor charge.

5. Again, we can use the exponential relaxation of the RC circuit to figure out the pulse duration. The capacitor voltage rises exponentially (with time \(RC\)) from 0 to \((2/3)V_{CC}\) towards \(V_{CC}\). This is equivalent to an exponential decay from \(V_{CC}\) towards 0 to \((1/3)V_{CC}\). Thus we can consider the decay

\[
V(t) = V_{CC} e^{-t/RC},
\]
(14.10)
and if we set \(V(\tau) = (1/3)V_{cc} \), where \(\tau \) is the pulse duration, we get

\[
\tau = (\log 3)RC \approx 1.1 RC. \tag{14.11}
\]

Again, “\(\log \)” here is the natural logarithm, and note that this is independent of the supply voltage.

Note that we have assumed that by the time the flip-flop is reset, the trigger pulse at the TRIG input is back to HIGH; otherwise the 5 input to the flip-flop will also be high, and we will put the flip-flop into the “bad” state. The net effect is that the output pulse will be “stretched” beyond the \(RC \) duration until the trigger input goes high. One workaround for this (if you’re stuck with long pulses but want to trigger short pulses) is to run the trigger input through a differentiator (with a short \(RC \) time) and then into the 555.

14.2.1.1 The 74121

A number of other monostable multivibrators are available, more-or-less prepackaged. A good example is the 74121, which is faster than the 555 circuit—it can be programmed for pulses down to 35 ns, and up to 28 s. The “guts” and some external connections of the 74121 are shown below.

Some operation notes:

1. As in the 555, the internal monostable is controlled by the time for the external capacitor to charge via a resistor. The resistor can be internal (\(R_{int} \)) if pin 9 is connected to +5 V, or external, if \(R_{ext} \) is connected between pin 11 and +5 V. (Of course, if both are connected, then we have the parallel resistance of the two.) The pulse duration is given by

\[
\tau = (\log 2)RC \approx 0.693 RC. \tag{14.12}
\]

2. The internal monostable is triggered by a rising pulse edge, but there is some extra input logic to make this more flexible. For example, suppose \(A_1 \) and \(B \) are held HIGH. Then a falling edge on \(A_2 \) triggers the pulse. Of course, \(A_1 \) and \(A_2 \) can be exchanged here.

3. Similarly, if either \(A_1 \) or \(A_2 \) are held LOW, then a rising edge into \(B \) will trigger the flip-flop. In this case, the \(B \) input goes into a Schmitt trigger (0.2-V hysteresis), and thus can handle slow/noisy inputs.

4. The 74121 is nonretriggerable; this means the device will ignore any input edges while it is generating an output pulse. Other one-shots, like the 74123, is retriggerable, which means that a new triggering edge will always start a new timing cycle, even if already in the middle of a timing cycle.

14.2.1.2 Combining One-Shots: Pulse Delay

In complex timing systems, where many things must happen at the proper times, many one-shots can be chained together to generate the proper timing sequence. As simple example, two one-shots can be chained together to generate a delayed pulse from an initial trigger pulse. This times two events with a fixed delay, such as launching a projectile, and then a short time later triggering a photographic flash.
Note the different edge triggers of the two monostables.

14.2.1.3 Circuit Practice: Astable Multivibrator

Another example of combining one shots is to combine two, in order to make an astable multivibrator. How can you do this?

Solution. The circuit for this is shown below.

Note that the **HIGH** and **LOW** times are controlled separately by the durations of the two one-shots, and each one-shot triggers on the falling edge of the other.
14.3 Exercises

Problem 14.1

Shown below is (a) the basic 555 astable multivibrator and (b) a modified version. For each circuit compute the period and duty cycle in terms of R_1, R_2, C, and any relevant voltages.

![Circuit Diagrams]

Problem 14.2

Suppose you have a standard TTL logic gate, and you want to put a Schmitt trigger on one of the inputs to address a problematic input signal. However, suppose that all you have is a 555; show how to wire a 555 to act as a Schmitt trigger (actually, an inverting Schmitt trigger). Make sure to explain why your circuit acts as a Schmitt trigger, and what are the input logic levels.

Problem 14.3

Work out the period of the basic 555 astable multivibrator circuit, but this time account for the voltage drop V_d across the discharge transistor when it is turned on. That is, the supply voltage should no longer drop out of the result. Assuming $V_d = 0.2$ V, how much does this affect the period compared to the idealized value if $V_{cc} = +5$ V?

Problem 14.4

In one incarnation, the bicolor LED looks like an ordinary LED (plastic package with two leads), but is really 2 LEDs in parallel, with one reversed. That is, if current flows “forwards,” the LED lights green, and if it flows “backwards,” the LED lights red.

Design a circuit using two 555’s to light a bicolor LED, alternating between red and green. For concreteness, design for a $\sim50\%$ duty cycle (approximately equal time in each color), with a period of 1 s. Use whatever passive components you like, but be specific about their values. Also, show all pin connections on the 555’s.

Hint: note that it would be a bad idea to configure two 555 as independent oscillators. Why? Instead try using one of the 555’s as a NOT gate.

Problem 14.5

Design a 10 kHz square-wave oscillator (50% duty cycle) using only 74121’s and capacitors.
Chapter 15
Digital–Analog Interfaces

One of the most important concepts in digital electronics is interfacing digital circuits to analog circuits. If an analog signal serves as the input to a digital circuit, then we need analog-to-digital conversion (ADC), while a digital circuit generating an analog signal requires digital-to-analog conversion (DAC). We will consider the latter first, which is simpler, and ADC often relies on DAC.

15.1 Digital-to-Analog Conversion

Digital-to-analog conversion is very common in everyday circuits. This is required to generate the audio signals in cell phones and CD/DVD/MP3 players, and to generate the output intensity (or color) of displays in LCD projectors or in CRT/plasma/LCD displays. Essentially, any analog signal coming out of a computer must have gone through the DAC process.

15.1.1 Resolution

Before understanding how DAC circuitry works, let’s review some of the resolution requirements for representing analog signals. Analog signals must be sampled—that is instead of a continuous function \(y(t) \), we must represent it via samples \(y_j := y(t_j) \) at sample times \(t_j \) (typically regularly spaced), and the values of \(y_j \) must be represented with some finite precision (i.e., it must be represented with a finite number of bits). In terms of amplitude resolution, if there are \(N \) bits of data, then there are \(2^N \) different signal levels available within a defined range (e.g., within some voltage range). The signal levels could be positive only, represented by unsigned integers, or positive/negative using signed integers (or unsigned integers after adding an offset that ensures the signal is always positive). In this case, since the “real” signal must always be rounded to the nearest available level, the fractional sampling resolution is \(2^{-N} \), and the absolute resolution is \(2^{-N}V_{\text{range}} \) for a voltage signal if \(V_{\text{range}} \) is the total voltage range available for sampling the signal. Since the rounded value should be to the nearest sampling value, the maximum error is \(1/2 \) of the resolution, or \(2^{-(N+1)} \) maximum fractional error for signals within \(V_{\text{range}} \). So, for 16-bit sampling, the error is at worst about 8ppm.

In terms of timing resolution, the requirement is set via the sampling theorem. Suppose we sample a signal every \(\Delta t \) in time. Then the sampling rate is given by

\[
\text{sampling rate} = \frac{1}{\Delta t}.
\]

(15.1)

Then we can also define the Nyquist frequency by

\[
\text{Nyquist frequency} = \frac{1}{2\Delta t} = \frac{\text{sampling rate}}{2}.
\]

(15.2)

It turns out that, according to the sampling theorem, the Nyquist frequency is the largest frequency that is accurately reproduced by the sampled signal.\(^1\) For example, in compact-disc (CD) audio, the sampling rate

\(^1\)For details, see Daniel Adam Steck, *Quantum and Atom Optics*, available online at http://steck.us/teaching.
Chapter 15. Digital–Analog Interfaces

is 44.1 kHz, since the goal is to reproduce audio frequencies up to about 20 kHz. Note that 44.1 kHz is then a bit above the Nyquist frequency, which allows for extra tricks, like an **anti-aliasing filter**, to improve the quality of the reconstructed audio. The idea here is to guard against **aliasing**, which is the error suffered by frequencies **above** the Nyquist frequency—they are spuriously represented as lower (sub-Nyquist) frequencies in the sampled signal. Generally, a low-pass filter is used to remove these high frequencies, but since the filter does not have a perfectly sharp cutoff, the extra sampling rate above the Nyquist frequency accommodates the desired audio range, while giving some bandwidth for the low-pass filter to have a significant effect before aliasing errors occur.

15.1.2 DAC Circuitry

Now, how do we make a DAC? The basic ingredient is a summing (inverting) amplifier, which you may recall from Section 6.3.4. Recall that this takes a number of voltage inputs \(V_0, V_1, \ldots \), and has as output

\[
V_{\text{out}} = -R_F V_0 - \frac{R_F}{R_1} V_1 - \frac{R_F}{R_2} V_2 - \cdots ,
\]

which is an inverted, weighted sum, where the relative weights are controlled by the input resistors, and the weights have the feedback resistance \(R_F \) in common.

![DAC circuit diagram](image)

Then, for example, we can build a 4-bit DAC as in the diagram below.

![4-bit DAC circuit diagram](image)

Here, \(A_0 - A_3 \) are digital inputs, with \(A_0 \) the LSB and \(A_3 \) the MSB of an unsigned integer. The inputs drive analog switches, which conduct when \(A_j = 1 \) and are open when \(A_j = 0 \). The voltage \(V_{\text{ref}} \) sets the (absolute)
voltage resolution and the range of the conversion. Then using the summing-amp formula,

\[
V_{\text{out}} = -A_0 \frac{R_p}{R} V_{\text{ref}} - 2A_1 \frac{R_p}{R} V_{\text{ref}} - 4A_2 \frac{R_p}{R} V_{\text{ref}} - 8A_3 \frac{R_p}{R} V_{\text{ref}}
= -\frac{R_p}{R} V_{\text{ref}} (A_0 2^0 + A_1 2^1 + A_2 2^2 + A_3 2^3).
\]

(15.4) (DAC output)

So, for example, an input of 0011 corresponds to \(V_{\text{out}} = -3(R_p/R)V_{\text{ref}}\). Of course, usually we want a positive output, which requires another inverting amplifier.

15.1.3 R–2R Ladder

One problem with the above circuit is that it requires a series of resistors of different values to be made to high accuracy, which is difficult, especially for a high-resolution DAC. It is much easier to make sets of matching resistors, and there is a circuit that takes advantage of this, called the **R–2R ladder**, which uses only resistors of size \(R\) and \(2R\). The idea is below.

Again, the inputs are \(A_0\)–\(A_3\) here, controlling analog/CMOS switches (here SPDT). To see how this works, consider the Thévenin-equivalent circuit for the \(A_0\) input. This is a simple 50% voltage divider, so the equivalent resistance is \(R\), and the voltage is half the input \(A_0 V_{\text{ref}}\). (Note that we consider \(A_0 = 0\) if the switch is down, \(A_0 = 1\) if the switch is up.)

\[
V_0 = A_0 V_{\text{ref}} = \frac{2R}{2R} V_0 = \frac{V_0}{2}
\]

Now lumping this equivalent circuit into the next “stage” with the \(A_1\) input, we have a similar voltage-divider situation.
Note that the Thévenin-equivalent voltage is just the average of the two input voltages. Continuing this process, we find that at each stage we add in half of the next input voltage and divide the remaining ones by two. The result is

\[
V_{\text{out}} = -V_{\text{ref}} \left(\frac{A_0}{16} + \frac{A_1}{4} + \frac{A_2}{8} + \frac{A_3}{2} \right) = -V_{\text{ref}} \frac{R_F}{2^4 R} \left(A_0 \cdot 2^0 + A_1 \cdot 2^1 + A_2 \cdot 2^2 + A_3 \cdot 2^3 \right). \tag{15.5}
\]

Thus, up to an overall factor, we obtain the same output as in Eq. (15.4).

Circuit Practice

For circuit practice, see the DAC controller board design by Todd Meyrath and Florian Schreck.² Trace through the circuit and note the following.

- The DAC7744 chips have 4 analog outputs, for 8 total output channels per board.
- An 8-bit address bus selects which DAC and output to use. The two LSBs (bits 0 and 1) select which output on a particular chip, bit 2 selects which of the two DACs on the board to activate, and the other bits select which (of possibly many) boards to address. Trace through the logic leading up to and including the NAND gates to verify that it works as advertised.
- This allows only one 16-bit data bus to feed all the outputs. The desired output is selected, the desired data is presented to the data bus, and then a strobe signal causes the addressed DAC to latch the desired output value.
- Note that the strobe pulse, which just amounts to matching the proper address, must be delayed behind the data and address signals so the inputs are settled before “load DAC” is triggered. The pulse is delayed by a buffered, RC circuit.
- Note that the NOT gates have Schmitt-trigger inputs. What part of the circuit justifies having Schmitt-input NOTs?

15.2 Analog-to-Digital Conversion

The complementary process to digital-to-analog conversion is **analog-to-digital conversion (ADC)**. We will go through several ADC methods.

15.2.1 Flash ADC

A conceptually simple method for ADC is **flash ADC** or **parallel-encoding ADC**. The idea is to use a voltage-divider chain to create many reference voltage, and a separate comparator is used to compare the input voltage to each reference. Then output logic is needed to properly encode the digital output as a binary number. As a simple example, consider the 2-bit flash ADC below.

The idea is to choose digital voltage levels ("quantization level") of 0, 1, 2, and 3 V. Then the maximum input range is \(-0.5\)–\(3.5\) V with a maximum error of \(0.5\) V. Then the conversion ranges with comparator outputs are enumerated below.

<table>
<thead>
<tr>
<th>voltage range</th>
<th>digital output</th>
<th>comparator output $C_2C_1C_0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-0.5)–(0.5) V</td>
<td>00</td>
<td>000</td>
</tr>
<tr>
<td>0.5–1.5 V</td>
<td>01</td>
<td>001</td>
</tr>
<tr>
<td>1.5–2.5 V</td>
<td>10</td>
<td>011</td>
</tr>
<tr>
<td>2.5–3.5 V</td>
<td>11</td>
<td>111</td>
</tr>
</tbody>
</table>

Note the logical expressions included to encode the three comparator outputs into two-bit binary.

The main advantage of a flash ADC is that it is \textit{fast}: the signal just needs to propagate through the comparators and gates, and the ADC can sample rapidly changing signals. The main disadvantage is that for \(N\) bits, there must be \(2^{N-1}\) comparators, which is difficult for more than about 10 bits of resolution.

15.2.2 Successive Approximation

A slower, but more generally useful ADC method is \textit{successive approximation}. This method is analogous to the root-finding problem: Suppose \(f(x)\) is a continuous function with a single root in \((a,b)\). That is, \(f(a)f(b) < 0\). Then how do we find the root; i.e., how do we find \(x_0\) such that \(f(x_0) = 0\)? The \textbf{bisection method} for root-finding works as follows.

1. We know \((a,b)\) brackets \(x_0\). So let \(\bar{x_0} = (a + b)/2\) be the initial best estimate for \(x_0\).
2. If \(f(a)f(\bar{x_0}) < 0\), then \((a, \bar{x_0})\) brackets the root.
3. Otherwise, \((\bar{x_0}, b)\) brackets the root.
4. Redefine \((a, b)\) to be the new, tighter bracketing interval for \(x_0\), and repeat.

This process converges exponentially, because the width of the bracketing interval is halved on each iteration. If \(\Delta x = b - a\), then the initial worst-case error in the estimate \(\bar{x}_0\) is \(\Delta x/2\). After \(N\) iterations, the error is \(\Delta x/2^{N+1}\).

The successive-approximation approach to ADC is the same problem, but to find what digital voltage \(\bar{V}\) best corresponds to \(V_{in}\). This is an iterative process to a predetermined accuracy, given by the number of digital bits. A circuit to implement this procedure is shown below. This uses the 74LS503 successive-approximation register (SAR) (now obsolete), which controls the bisection process. Most ADCs nowadays using successive approximation have all these components integrated into a single chip, with serial data output, which is handy for keeping pin counts low, but makes it harder to understand what is going on inside.

![Diagram of ADC circuit](image)

The SAR, the “mastermind” of the conversion process, works to find 1 bit of the digital result on each clock cycle, starting with the MSB. It does this by writing the “midpoint value” of the DAC’s range to the DAC (as the first approximation), and reads the comparison result from the comparator, which tells the SAR which half of the DAC range brackets \(V_{in}\). On the next cycle, the SAR writes out the new midpoint of the smaller bracketing range, and records the comparison result as the next converted bit, and so on. The 8-bit latch (’574) holds the completed conversion, while the SAR is performing the next conversion (and thus its outputs are changing).

As a 2-bit example, consider the same analog range (digital levels of 0, 1, 2, and 3V). But now, we will consider the conversion ranges to be
\[
< 0 \text{V} = 00 \\
0 - 1 \text{V} = 01 \\
1 - 2 \text{V} = 10 \\
> 2 \text{V} = 11,
\]

as we will see. Note the different offset compared to the flash-ADC example. Let’s assume a 1.3-V input. Then the process is as follows:

- During clock cycle #1, the SAR tries the midpoint of the whole range. We can take this to be 01 (more generally, 0111111... for \(N\) bits). The DAC voltage is then 1V, so the comparator is HIGH, and so the MSB is 1.
- During clock cycle #2, the SAR tries the midpoint of the remaining range (10–11). The “midpoint” is 10. The DAC voltage is then 2V, so the comparator is now LOW, and so the LSB is 0.
Thus, the converted result is 10, in agreement with the table above.

The advantages of SA-ADC is that the timing is guaranteed (measured in clock cycles), the result can be very accurate (if a good DAC is used), and the circuit is not too complicated. The main disadvantage are that SA-ADC is slower than flash conversion, and thus may need a sample/hold circuit to deal with rapidly changing input signals.

15.2.3 Single/Dual-Slope ADC

Another pair of important ADC methods goes under the name(s) of single/dual-slope ADC. The basic idea in single-slope ADC is to use a constant-current source to charge a capacitor, and then use a counter/clock combination to measure the time for the capacitor voltage to reach the input V_{in}.

The charge time is then proportional to the voltage. The idea is that time is very easy to measure accurately and precisely, so the method can be very accurate.

To show this mathematically, consider the capacitor-charging situation diagramed below, where a constant-current source I charges a capacitor to voltage $V_C(t)$.

![Diagram of capacitor charging](image)

Then using $Q = CV_C$ and differentiating,

$$I = \frac{dQ}{dt} = C\frac{dV_C}{dt},$$

so that for constant I,

$$V_C(t) = \frac{It}{C}.$$ (15.8)

Since I/C is a constant, this can be calibrated precisely to yield V_C (and thus V_{in}) in terms of t.

In dual-slope ADC, the conversion is done in two steps.

1. C is charged for a fixed time τ by a constant current $I \propto V_{in}$. If we let α be constant, then we can write $I = \alpha V_{in}$, so that

$$V_C(\tau) = \frac{\alpha V_{in}\tau}{C}.$$ (15.9)

2. Then, C is discharged at a constant current I', and the discharge time δt is measured. Then the discharge time is fixed as in single-slope ADC by

$$V_C(\tau) = \frac{I'\delta t}{C}.$$ (15.10)

Thus,

$$\delta t = \frac{CV_C(\tau)}{I'} = \frac{C(\alpha V_{in}\tau/C)}{I'} = \left(\frac{\alpha \tau}{I'}\right) V_{in}.$$ (15.11)
In this way, we are left to calibrate $\alpha \tau / I'$, which is a combination of the output of a current source (α), a time τ, and a current I', all of which can be well-calibrated. Notably, the capacitance C dropped out; capacitances are difficult to fabricate in a way that is accurate and stable. Also, note that the first stage takes time τ, which has an averaging effect over noise in V_{in}, whereas single-slope conversion is more apt to trigger early on a downward noise fluctuation of V_{in}.

15.3 Circuit Practice

Suppose you have a 3-bit DAC, with voltage levels 0 V, 0.1 V, 0.2 V, . . . , in a successive-approximation ADC. If $V_{in} = 0.35$ V,

- make a plot of the DAC output vs. time
- what is the final, converted digital value?

Answer. For the converted digital value: 100. The comparison voltages will be: 0.3 V, 0.5 V, 0.4 V.

15.4 State-Machine Emulation of SARs

A nice example of an application of a general state machine is the emulation of classic, but obsolete, integrated circuits that acts as successive-approximation registers (SARs) for ADC circuits. We will discuss the application of two SARs, the 74LS502 and the 74LS503.

15.4.1 74502

The 74LS502 is a 8-bit successive-approximation register (SAR) that is shown schematically below.

It operates as follows. There are three inputs:

- D is the input data (i.e., the output of the comparator feeds this input).
- CP is the clock-pulse input; the SAR action occurs on the rising pulse edges.
- S is the “start” input. This is normally HIGH, and brought LOW for one cycle (i.e., during one rising edge of CP) to begin conversion.

There are also 11 outputs:

- Q_0–Q_7 are the (parallel) digital conversion outputs.
- $\overline{Q_7}$ is an inverted copy of Q_7 (useful for signed-value ADC).
- \overline{CC} is HIGH during conversion, and goes LOW when the ADC operation is complete.
- Q_D is a synchronized copy of D (i.e., Q_D latches the state of D at the last rising clock edge), which could be used for serial data output.

Pin 8 ground and pin 16 power are not shown in the schematic diagram.

The operational rules are as follows.

3 Related files and more information available at http://atomoptics.uoregon.edu/~dsteck/74503.
• On a low start pulse on \(S \), the chip sets \(Q_7 Q_6 \cdots Q_0 = 01111111 \), and \(\overline{CC} = 1 \).

• Next clock pulse: set \(Q_7 = D, Q_6 = 0, Q_D = D \).

• Next clock pulse: set \(Q_6 = D, Q_5 = 0, Q_D = D \).

• Next clock pulse: set \(Q_5 = D, Q_0 = 0, Q_D = D \).

• Next clock pulse: set \(Q_0 = D, \overline{CC} = 0 \).

• On subsequent clock pulses, we only care that the parallel data \(Q_0 \sim Q_7 \) and \(\overline{CC} \) do not change.

We can also summarize this via the truth table (X = “don’t care”):

<table>
<thead>
<tr>
<th>clock cycle</th>
<th>inputs</th>
<th>outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>(D)</td>
<td>(S)</td>
<td>(Q_D)</td>
</tr>
<tr>
<td>0</td>
<td>X</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>(D_7)</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>(D_6)</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>(D_5)</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>(D_4)</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>(D_3)</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>(D_2)</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>(D_1)</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>(D_0)</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>X</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>X</td>
<td>1</td>
</tr>
</tbody>
</table>

15.4.1.1 General Emulation Notes

Now we will review the logic to implement this chip as a synchronous state machine. We will need (flip-flop) register outputs for \(Q_0 \sim Q_7 \), \(Q_D \), and \(\overline{CC} \). We will also use three extra register bits \(C_2, C_1, \) and \(C_0 \), where \(C_2 C_1 C_0 \) gives (in binary) the next parallel-output bit to latch. That is, the circuit should set \(C_2 C_1 C_0 = 111 \) on clock cycle 1 in the truth table, and then count backwards to 000.

To get started, first note that \(\overline{Q}_7 \) can just be implemented with an extra \(\text{NOT} \) gate at the output of \(Q_7 \), and does not require its own register output. Next, note that we can implement

\[
D_{Q_5} = \overline{S} + (C_2 \overline{C_1} C_0 D + C_2 \overline{C_1} C_0 Q_5) C_2 C_1 \overline{C_0}. \tag{15.12}
\]

Read this as follows. If the start pulse is 0 (so \(S = \overline{S} = 1 \)), then force \(Q_5 = 1 \), which is accomplished by the first term. The second term has an overall multiplier that forces the expression to 0 (unless there is an override by \(S \)) when the \(C_2 C_1 C_0 \) is at 6. The \(D \) term then stores the input data \(D \) when \(C_2 C_1 C_0 \) is at 5, and the \(Q_5 \) term allows \(Q_5 \) to persist for other values of \(C_2 C_1 C_0 \).

As an example of a counter bit, note that \(C_1 \) should change when \(C_2 C_1 C_0 \) is \text{X10} or \text{100} (remember we are counting backwards in binary). In either case it simply toggles, so

\[
D_{C_1} = \overline{S} + C_1 \overline{C_2} C_0 + C_2 \overline{C_1} \overline{C_0}. \tag{15.13}
\]

The first term forces this bit to 1 on the start pulse, the last term forces the bit to 1 on \(C_2 C_1 C_0 = 100 \), and the middle term is zero on \(C_2 C_1 C_0 = \text{X10} \), and allows \(C_1 \) to persist otherwise.
The complete set of logic expressions is as follows.

\[
\begin{align*}
D_{Q_7} &= \overline{S}(C_2C_1C_0D + \overline{C}_2\overline{C}_1\overline{C}_0Q_7) \\
D_{Q_6} &= \overline{S} + (C_2\overline{C}_1\overline{C}_0D + \overline{C}_2\overline{C}_1\overline{C}_0Q_6)\overline{C}_2\overline{C}_1\overline{C}_0 \\
D_{Q_5} &= \overline{S} + (C_2\overline{C}_1\overline{C}_0D + C_2\overline{C}_1\overline{C}_0Q_5)\overline{C}_2\overline{C}_1\overline{C}_0 \\
D_{Q_4} &= \overline{S} + (C_2\overline{C}_1\overline{C}_0D + C_2\overline{C}_1\overline{C}_0Q_4)\overline{C}_2\overline{C}_1\overline{C}_0 \\
D_{Q_3} &= \overline{S} + (C_2\overline{C}_1\overline{C}_0D + \overline{C}_2\overline{C}_1\overline{C}_0Q_3)\overline{C}_2\overline{C}_1\overline{C}_0 \\
D_{Q_2} &= \overline{S} + (C_2\overline{C}_1\overline{C}_0D + \overline{C}_2\overline{C}_1\overline{C}_0Q_2)\overline{C}_2\overline{C}_1\overline{C}_0 \\
D_{Q_1} &= \overline{S} + (C_2\overline{C}_1\overline{C}_0D + \overline{C}_2\overline{C}_1\overline{C}_0Q_1)\overline{C}_2\overline{C}_1\overline{C}_0 \\
D_{Q_0} &= \overline{S} + (C_2\overline{C}_1\overline{C}_0\overline{C}_D + \overline{C}_2\overline{C}_1\overline{C}_0\overline{C}_CQ_0)\overline{C}_2\overline{C}_1\overline{C}_0 \\
D_{\overline{C}_7} &= \overline{S} + \overline{C}_2\overline{C}_1\overline{C}_0\overline{C}_D \\
D_{C_6} &= \overline{S} + \overline{C}_2\overline{C}_1\overline{C}_0\overline{C}_C \\
D_{C_5} &= \overline{S} + \overline{C}_1\overline{C}_6C_1 + \overline{C}_2\overline{C}_1\overline{C}_0 \\
D_{C_4} &= \overline{S} + \overline{C}_2\overline{C}_1\overline{C}_0\overline{C}_C \\
D_{Q_D} &= D \\
\overline{Q}_7 &= \overline{Q}_7
\end{align*}
\]

(15.14)

To understand all these in some detail:

- The easiest ones to understand are the last two: \(\overline{Q}_7\) is just an inverted copy of \(Q_7\), and \(Q_D\) just latches \(D\).
- On all the others, the start pulse forces the bits to 1, except for \(Q_7\), which is forced to 0. Note that the start pulse overrides all other information.
- Then \(Q_7\) loads \(D\) when \(C_2C_1C_0 = 111\) and persists otherwise. We covered the similar logic for \(Q_5\) already; \(Q_0–Q_4\) and \(Q_6\) follow the same idea in persisting, except changing to 0 and storing \(D\) at the right stages. However, \(Q_3\) is slightly more complicated since we stop the counter on \(C_2C_1C_0 = 000\), so we must also use the \(\overline{C}_C\) bit to make sure the state of \(Q_0\) persists when conversion is complete.
- For \(\overline{C}_C\), this should be forced to zero on \(C_2C_1C_0 = 000\) (i.e., after the last comparison), otherwise it persists. The factor of \(\overline{C}_C\) is not strictly necessary on the second term.
- We covered the logic of the \(C_1\) counter bit already. Then \(C_0\) is simple in toggling on each clock pulse, except that once \(C_2C_1C_0 = 000\), we will force it to stay at 0. For \(C_2\), the MSB should only change on \(C_2C_1C_0 = 100\), so we detect

15.4.1.2 22V10 Emulation

To emulate the 74LS502, we will choose the 22V10 SPLD (e.g., the ATF22V10C from Atmel). This has a 10-bit register (i.e., 10 D-type flip-flops) and 10 outputs, plus plenty of logic for sum-of-product logic and plenty of inputs. However, there is a problem: we have 13 registered outputs, but only 10 bits in the register. To handle this, note that the counter-logic bits \(C_0–C_2\) are actually redundant—and that is, although they are conceptually useful states in writing down the state-machine logic, they are not needed as register variables in the sense that they can be inferred from the other register variables \(Q_0–Q_7\) and \(\overline{C}_C\). In particular, note that
Thus, we are down to 10 registered outputs, and we may proceed.

The pinout for the original 74LS502 and the 22V10-based emulator are shown below. Note that because we only have 10 outputs available, we have chosen to include the Q_D output but not the Q_7 output, but we could easily make the opposite choice, as we will discuss below.
The code to implement the state machine in the **CUPL** (Compiler for Universal Programmable Logic) programming language\(^4\) is shown below.

```cupl
74502-22V10.pld

/*
 * 74502 SAR emulator, on a 22v10
 */
Name 74502-22V10;
Partno 74502;
Revision 01;
Date 5/23/2015;
Designer Daniel Steck;
Company University of Oregon;
Location None;
Assembly None;
Device g22v10;

/*** inputs ***/
pin 1 = CP; /* clock pulse (trig on rising edge) */
pin 2 = !S; /* start low */
pin 3 = Din; /* data */

/*** outputs ***/
pin 14 = !CC; /* conversion complete low */
pin [15..22] = [Q0..Q7]; /* 8-bit output */
pin 23 = QD; /* registered/synchronous copy of data input */

/*** intermediate counter variables ***/
C0 = (((!Q7 & Q6 # !Q5) & Q4 # !Q3) & Q2 # !Q1) & Q0 & !CC;
C1 = ((!Q7 # !Q6) & Q5 & Q4 # !Q3 # !Q2) & Q1 & Q0 & !CC;
C2 = (!Q7 # !Q6 # !Q5 # !Q4) & Q3 & Q2 & Q1 & Q0 & !CC;

/*** register inputs ***/
CC.D = !(S # !(!C2 & !C1 & !C0) & !CC);
Q7.D = !S & (C2 & C1 & C0 & Din # !(C2 & C1 & C0) & Q7);
Q6.D = S # (C2 & !C1 & !C0 & Din # !(C2 & !C1 & C0) & Q6) & !(C2 & C1 & C0);
Q5.D = S # (C2 & !C1 & !C0 & Din # !(C2 & !C1 & C0) & Q5) & !(C2 & C1 & !C0);
Q4.D = S # (C2 & !C1 & !C0 & Din # !(C2 & !C1 & C0) & Q4) & !(C2 & !C1 & C0);
Q3.D = S # (!C2 & !C1 & !C0 & Din # !(C2 & !C1 & C0) & Q3) & !(C2 & !C1 & C0);
Q2.D = S # (!C2 & !C1 & !C0 & Din # !(C2 & !C1 & C0) & Q2) & !(C2 & !C1 & C0);
Q1.D = S # (!C2 & !C1 & !C0 & Din # !(C2 & !C1 & C0) & Q1) & !(C2 & !C1 & C0);
Q0.D = S # (!C2 & !C1 & !C0 & !CC & Din # !(C2 & !C1 & !C0 & !CC) & Q0) & !(C2 & !C1 & C0);
QD.D = Din;

/*** handle flip-flop variables set/preset inputs ***/
CC.ar = 'b'0;
Q7.ar = 'b'0;
Q6.ar = 'b'0;
Q5.ar = 'b'0;
Q4.ar = 'b'0;
Q3.ar = 'b'0;
Q2.ar = 'b'0;
Q1.ar = 'b'0;
Q0.ar = 'b'0;
QD.ar = 'b'0;
```

\(^4\)The only compiler realistically available nowadays is WinCUPL, which is Windows-based, crash-prone, and proprietary, but it is freely distributed by Atmel: http://www.atmel.com/tools/wincupl.aspx.
This is a relatively straightforward translation of the equations we have already written down. Note that

- The first block contains obligatory header information, most of which is merely informational, but the “Device” declaration to “g22v10” means we have selected this device (which also covers the ATF22V10C variant).
- The next two blocks declare input and output pin assignments and variables. Note that a NOT is denoted by “!”; for example, \overline{S} is denoted $1S$.
- The next block gives the expressions (15.15)–(15.17) for the counter variables C_0–C_2. Note that the OR operation is represented by a hash (#), and the AND operation is represented by an ampersand (&).
- The next block gives expressions for all the register inputs, as in Eqs. (15.14) (except for counter register variables). The CUPL notation is that the input for the register variable Q_7 is $Q_7.D$ (i.e., this is what we call D_{Q_7}).
- Finally, in the last block, we make sure to tie the other flip-flop controls to default values. Here, the 22V10 flip-flops have asynchronous-reset (AR) and synchronous-preset (SP) inputs; we simply tie all of them to logical 0 (written as “binary 0” or ‘b’ 0 in CUPL).
- To have Q_7 as an output instead of D_7, we can change the “pin 23 = QD;” declaration to now read “pin 23 = $\overline{Q_7}$;”, and then change the line “QD.D = Din;” to “$\overline{Q_7}$.D = \overline{Din};” (note that this output would then no longer be registered, but “combinatorial”).

The compiler then simplifies the logical expressions and figures out how to make the fused connections in the configurable-logic section of the 22V10. A separate programmer is necessary to then “burn” the chip.

15.4.2 74503

The 74LS503 is basically the same as the ’502, but it dispenses with Q_D and adds an enable-LOW input \overline{E}.

The \overline{E} operates as follows. If it is held LOW, then the chip behavior is essentially identical to the ’502. If it is taken HIGH—the intent is for this to happen after the start operation but before any data acquisition occurs—then Q_7 is asynchronously forced HIGH, and the chip does not accept any data from D. When $\overline{E} = 0$ again, the acquisition process proceeds as in the ’502.

The idea behind the \overline{E} input in the ’503 is that two ’503’s can be “stacked” to realize a 16-bit SAR. The idea is that the \overline{CC} of the most-significant chip (byte) drives the \overline{E} of the least-significant chip, so that when the first chip is finished, acquisition continues on the second chip. The connections are shown in the data sheet for the 74LS503. The idea is to share the data, clock, and start lines, and chain the \overline{CC} of the MS chip to the enable of the LS chip.
15.4.2.1 ATF750C Emulation

To emulate the 74LS503, we will choose the ATF750C CPLD (from Atmel). Note that when the C_j are eliminated as in Eqs. (15.15)–(15.17) in the case of the '503, the expressions for $D_{Q_6} – D_{Q_0}$ must have “+E” tacked on to each expression, since these variables track the counting state. However, this extra addition appears to make the logic too complicated to fit in either the 22V10 or the ATF750C.

Fortunately, the ATF750C has 10 extra register bits that are present “internally” (i.e., they can not be connected directly to outputs as are the other 10 register bits). Thus we can implement $C_0 – C_2$ as register variables.

Now we need to show how to modify the '502 logic to accommodate this new input. Note that since the effect on Q_7 is asynchronous, Q_7 can’t any more be a register output. So for the sake of notation, let P_7 be a register output, and let Q_7 be a Boolean function of P_7 and \overline{E}. The other outputs $Q_0 – Q_6$ and \overline{E} can still be register outputs. The summary of logic expressions is below.

\[
\begin{align*}
D_{P_7} &= \overline{S}(C_2C_1C_0D + C_2C_1C_0P_7)\overline{E} \\
Q_7 &= \overline{E} + P_7 \\
D_{Q_6} &= \overline{S} + (C_2C_1C_0D + C_2C_1\overline{C_0}Q_6)C_2C_1C_0 \\
D_{Q_5} &= \overline{S} + (C_2\overline{C_1}C_0D + C_2C_1C_0Q_5)C_2C_1\overline{C_0} \\
D_{Q_4} &= \overline{S} + (C_2\overline{C_1}\overline{C_0}D + C_2C_1C_0Q_4)C_2\overline{C_1}C_0 \\
D_{Q_3} &= \overline{S} + (C_2C_1C_0D + C_2C_1C_0Q_3)C_2\overline{C_1}C_0 \\
D_{Q_2} &= \overline{S} + (C_2\overline{C_1}C_0D + C_2C_1\overline{C_0}Q_2)\overline{C_2}C_1C_0 \\
D_{Q_1} &= \overline{S} + (C_2C_1C_0D + C_2C_1C_0Q_1)\overline{C_2}C_1C_0 \\
D_{Q_0} &= \overline{S} + (C_2C_1C_0\overline{C_0}D + C_2C_1C_0\overline{C_0}Q_0)C_2\overline{C_1}C_0 \\
D_{\overline{E}} &= \overline{S} + C_2C_1C_0\overline{C_0} \\
D_{C_2} &= \overline{S} + C_2C_1C_0C_2 + \overline{E} \\
D_{C_1} &= \overline{S} + C_1\overline{C_0}C_1 + C_2\overline{C_1}\overline{C_0} + \overline{E} \\
D_{C_0} &= \overline{S} + C_2C_1C_0\overline{C_0} + \overline{E} \\
Q_7 &= (Q_7)
\end{align*}
\]

Note that we are forcing $P_7 = 0$ on a disable cycle, so that conversion happens correctly afterwards (otherwise spurious data could be loaded). Then the expression for Q_7 allows P_7 to be overridden by \overline{E} asynchronously. Also, although overkill, the counter bits are all forced to 1 to ensure conversion occurs correctly. (Really, this should only be needed for C_0). We only need correct behavior if the chip is disabled right after a start
pulse, so the other bits should be okay. However, it is okay to add \(+E \) to the other register inputs if desired. We have also dispensed with \(D_{QD} \).

The pin diagrams for the original chip and emulator are shown below. Note that we can now accommodate every output from the original chip.

The code to implement the state machine in CUPL is shown below.

```plaintext
74503-F750C.pld

/*
 * 74503 SAR emulator, on an ATF750C
 */
Name 74503-F750C;
Partno 74503;
Revision 01;
Date 5/23/2015;
Designer Daniel Steck;
Company University of Oregon;
Location None;
Assembly None;
Device v750c;

/*** inputs ***/
pin 1 = CP; /* clock pulse (trig on rising edge) */
pin 2 = !S; /* start low */
pin 3 = Din; /* data */
pin 4 = !E; /* enable low */

/*** outputs ***/
pin 14  = !CC; /* conversion complete low */
pin [15..22] = [Q0..Q7]; /* 8-bit output */
pin 23  = !Q7copy; /* inverted copy of Q7 */

/*** internal nodes ***/
node P7;
node [C0..C2];

/*** intermediate counter variables ***/
```
C0.D = S # !(C2 & C1 & C0) & C0 # E;
C1.D = S # !(C1 & C0) & C1 # C2 & C1 & !C0 # E;
C2.D = S # !(C2 & !C1 & C0) & C2 # E;

/*** register inputs ***/
CC.D = !(S # !(!C2 & !C1 & C0) & !CC);
P7.D = !S & (C2 & C1 & C0 & Din # !(C2 & C1 & C0) & P7) & E;
Q6.D = S # (C2 & C1 & C0 & Din # !(C2 & C1 & C0) & Q6) & !(C2 & C1 & C0);
Q5.D = S # (C2 & C1 & C0 & Din # !(C2 & C1 & C0) & Q5) & !(C2 & C1 & C0);
Q4.D = S # (C2 & C1 & C0 & Din # !(C2 & C1 & C0) & Q4) & !(C2 & C1 & C0);
Q3.D = S # (!C2 & C1 & C0 & Din # !(!C2 & C1 & C0) & Q3) & !(C2 & C1 & C0);
Q2.D = S # (!C2 & C1 & C0 & Din # !(!C2 & C1 & C0) & Q2) & !(C2 & C1 & C0);
Q1.D = S # (!C2 & C1 & C0 & Din # !(!C2 & C1 & C0) & Q1) & !(C2 & C1 & C0);
Q0.D = S # (!C2 & C1 & C0 & !CC & Din # !(!C2 & C1 & C0) & Q0) & !(C2 & C1 & C0);

/*** combinatorial outputs ***/
Q7 = !E # P7;
Q7copy = Q7;

/*** handle flip-flop variables set/preset inputs ***/
CC.ar = 'b'0;
C2.ar = 'b'0;
C1.ar = 'b'0;
C0.ar = 'b'0;
P7.ar = 'b'0;
Q6.ar = 'b'0;
Q5.ar = 'b'0;
Q4.ar = 'b'0;
Q3.ar = 'b'0;
Q2.ar = 'b'0;
Q1.ar = 'b'0;
Q0.ar = 'b'0;

CC.sp = 'b'0;
C2.sp = 'b'0;
C1.sp = 'b'0;
C0.sp = 'b'0;
P7.sp = 'b'0;
Q6.sp = 'b'0;
Q5.sp = 'b'0;
Q4.sp = 'b'0;
Q3.sp = 'b'0;
Q2.sp = 'b'0;
Q1.sp = 'b'0;
Q0.sp = 'b'0;

/*** flip-flop-clock multiplexer (use input clock pin) ***/
CC.ckmux = CP;
C2.ckmux = CP;
C1.ckmux = CP;
C0.ckmux = CP;
P7.ckmux = CP;
Q6.ckmux = CP;
Q5.ckmux = CP;
Q4.ckmux = CP;
Q3.ckmux = CP;
Q2.ckmux = CP;
Q1.ckmux = CP;
Q0.ckmux = CP;

Again, this is a relatively straightforward translation of the Boolean-algebraic equations. Note that

- In the first block, we now declare the more powerful chip (“v750c”).
- In the next two blocks, we declare E and $\overline{Q_7}$ (the latter by defining the “copy” variable $Q7copy$).
- In the next block, we implement the counter variables C_0–C_2 as register variables, as in Eqs. (15.18).
- The next block gives expressions for all the register inputs, as in Eqs. (15.18) (except for the counter register variables we already implemented). The subsequent block implements the combinatorial outputs Q_7 and $\overline{Q_7}$.
- Finally, in the last block, the ATF750C has a “clock multiplexer” control on the flip-flop inputs. The upshot is that we must declare the flip-flop clock inputs to be connected to the clock-input pin CP.
- To have $\overline{Q_7}$ as an output instead of D_7, we can change the “pin 23 = QD;” declaration to now read “pin 23 = notQ7;”, and then change the line “QD.D = Din;” to “notQ7 = !Q7;” (note that this output would then no longer be registered, but “combinatorial”).

The compiler then simplifies the logical expressions and figures out how to make the fused connections in the configurable-logic section of the 22V10. A separate programmer is necessary to then “burn” the chip.

15.4.3 Testing the State Machines

The WinCUPL package also allows simulation tests. We define the test values in another file (i.e., define a sequence of input and expected output values). The simulator will simulate the chip and ensure that it passes the test values. These tests values can also be embedded in the code to be sent to the programmer, so the programmer can test the actual chip.

Test files for both emulators are attached below; it’s a good exercise to look through and understand these. The header block here matches that of the .pld file. The ORDER declaration gives a sequence of pins (variables) for consideration. In the VECTOR block, we give a bunch of input/expected-output states, in the order of the ORDER declaration. The notation for the values is:

- 0 and 1 are the logical input values.
- L and H are corresponding logical values, but used for expected outputs.
- c is equivalent to a 0, then a 1, and then a 0 (i.e., a clock pulse).

```plaintext
74502-22V10.si

/*
 * 74502 SAR emulator, on a 22v10
 */
Name 74502-22V10;
Partno 74502;
Revision 01;
Date 5/23/2015;
Designer Daniel Steck;
Company University of Oregon;
Location None;
Assembly None;
Device g22v10;

ORDER: CP, !S, Din, QD, Q7, Q6, Q5, Q4, Q3, Q2, Q1, Q0, !CC;
```
VECTORS:
c 00 LLLLLLLLLL
 LLLLLLLLLL

 LLLLLLLLLL
 LLLLLLLLLL
 LLLLLLLLLL
 LLLLLLLLLL
 LLLLLLLLLL
 LLLLLLLLLL
 LLLLLLLLLL
 LLLLLLLLLL
 LLLLLLLLLL
 LLLLLLLLLL
 LLLLLLLLLL
 LLLLLLLLLL
 LLLLLLLLLL
 LLLLLLLLLL
 LLLLLLLLLL

 LLLLLLLLLL
 LLLLLLLLLL
 LLLLLLLLLL
 LLLLLLLLLL
 LLLLLLLLLL
 LLLLLLLLLL
 LLLLLLLLLL
 LLLLLLLLLL
 LLLLLLLLLL
 LLLLLLLLLL
 LLLLLLLLLL
 LLLLLLLLLL
 LLLLLLLLLL
 LLLLLLLLLL
 LLLLLLLLLL

 LLLLLLLLLL
 LLLLLLLLLL
 LLLLLLLLLL
 LLLLLLLLLL
 LLLLLLLLLL
 LLLLLLLLLL
 LLLLLLLLLL
 LLLLLLLLLL
 LLLLLLLLLL
 LLLLLLLLLL
 LLLLLLLLLL
 LLLLLLLLLL
 LLLLLLLLLL
 LLLLLLLLLL
 LLLLLLLLLL

01 HLHHHHHHHH
 HHHHHHHHHH
 HHHHHHHHHH
01 HLHHHHHHHH
 HHHHHHHHHH
 HHHHHHHHHH
01 HLHHHHHHHH
 HHHHHHHHHH
 HHHHHHHHHH
01 HLHHHHHHHH
 HHHHHHHHHH
 HHHHHHHHHH
01 HLHHHHHHHH
 HHHHHHHHHH
 HHHHHHHHHH
01 HLHHHHHHHH
 HHHHHHHHHH
 HHHHHHHHHH
01 HLHHHHHHHH
 HHHHHHHHHH
 HHHHHHHHHH
01 HLHHHHHHHH
 HHHHHHHHHH
 HHHHHHHHHH
01 HLHHHHHHHH
 HHHHHHHHHH
 HHHHHHHHHH
01 HLHHHHHHHH
 HHHHHHHHHH
 HHHHHHHHHH
01 HLHHHHHHHH
 HHHHHHHHHH
 HHHHHHHHHH
01 HLHHHHHHHH
 HHHHHHHHHH
 HHHHHHHHHH
01 HLHHHHHHHH
 HHHHHHHHHH
 HHHHHHHHHH
01 HLHHHHHHHH
 HHHHHHHHHH
 HHHHHHHHHH

74503-F750C.si

/
* 74503 SAR emulator, on an ATF750C
*/
Name 74503-F750C;
Partno 74503;
Revision 01;
Date 5/23/2015;
Designer Daniel Steck;
Company University of Oregon;
Location None;
Assembly None;
Device v750c;
ORDER:
CP, !E, !S, Din, C2, C1, C0, Q7, Q6, Q5, Q4, Q3, Q2, Q1, Q0, !CC;

VECTORS:
c 0 00 HHH LHHHHHHHH
C 0 10 HHL LLLHLLLLL
C 0 10 HLL LLLLLLLLL
C 0 10 LHH LLLLLLLLL
C 0 10 LHL LLLLLLLLL
C 0 10 LLH LLLLLLLLL
C 0 10 LLL LLLLLLLLL
C 0 11 HHH HHHHHHHHH
C 0 11 HHL HHHLHHLHH
C 0 11 HLH HHHLHHLHH
C 0 11 HLL HHHLHHLHH
C 0 11 LHH HHHHLHHHH
C 0 11 LHL HHHHLHHHH
C 0 11 LLH HHHHLHHHH
C 0 11 LLL HHHHLHHHH
C 0 01 HHH LHHHHHHHH
C 0 10 HHL LLLHLLLLL
C 0 10 HLH LLLLLLHHH
C 0 10 HLL LLLLLLLHH
C 0 10 LHH LLLLLLLLL
C 0 10 LHL LLLLLLLLL
C 0 10 LLH LLLLLLLLL
C 0 10 LLL LLLLLLLLL
C 1 00 HHH HHHHHHHHH
C 1 10 HHH HHHHHHHHH
C 0 10 HHH HHHHHHHHH
C 0 10 HHL LHHHHHHHH
C 0 10 HLH LLLHLLLLL
C 0 10 HLL LLLLLLLLL
C 0 10 LHH LLLLLLLLL
C 0 10 LHL LLLLLLLLL
C 0 10 LLH LLLLLLLLL
C 0 10 LLL LLLLLLLLL

15.5 Exercises

Problem 15.1

(a) Derive an expression for the dynamic range (the largest vs. the smallest nonzero-amplitude signal) of an N-bit sampled signal. Recall that when you compare two amplitudes A and A_0 in dB, the expression is

$$\text{(ratio in dB)} = 20 \log_{10} \left(\frac{A}{A_0} \right)$$

(15.19)

(b) What is the dynamic range for CD audio (16 bits) in dB? Bluray audio (24 bits)? (For comparison, the dynamic range of human hearing is usually quoted as 120 dB.)

Problem 15.2

Use a counter to design a simple DAC based on pulse-width modulation as follows: Your circuit should take an 8-bit digital input, representing an 8-bit unsigned integer, and then control the brightness of an LED to be proportional to this integer. Assume the clock signal to be given and to be as fast as you need it to be. You may use whatever support logic you like, but you may find it useful to use a flip-flop, and look into the binary magnitude comparator (read up on the 74688). Make sure to properly limit the LED current.

Be specific about any ICs you use (i.e., give the model number, like 74688, and if it matters, specify which logic family, e.g., 74HCT688). You should show all important connections, but don’t bother with universal stuff like power supplies, grounds, chip enables, etc. Also, you don’t need to explicitly show the clock source, just indicate the existence of the clock signal and show any connections where it enters your circuit.

Problem 15.3

(a) Use a counter (specifically, an 8-bit up counter), a clock source (astable multivibrator), a comparator, and a DAC to design a simple ADC. That is, the counter should count upwards starting from zero, and freeze at the appropriate conversion value (i.e., the frozen counter is the output). Use whatever support logic you like, and don’t worry about latching the output. You should include a start/reset input that resets the counter and allows the next conversion to start.

As in Problem 2, be specific about any ICs you use; show all important connections, but don’t bother with universal stuff; and you don’t need to explicitly show the clock source, just indicate the existence of the clock signal and show any connections where it enters your circuit.

(b) Why is this ADC slower than a successive-approximation ADC? (And by how much is this ADC slower on average?)

(c) What kind of “bias” does this ADC have in terms of converting a noisy input signal?

Problem 15.4

(a) In the successive-approximation ADC examples from Section 15.2.2, the convention is that the SAR starts with the “midpoint” word 01111111 for an 8-bit ADC (as in the 74LS502 and 74LS503 SAR’s in Section 15.4). Another possible (and reasonable) convention is to start off with the the alternate midpoint word 10000000. Briefly describe the difference in the end result of the two schemes for an arbitrary input.

(b) Consider the ADC circuit shown below, where the DAC conversion levels are 0, 0.01, 0.02, ..., 2.55 V. Suppose the input analog voltage of 0.45 V, and as mentioned the SAR starts with 01111111 on the first clock cycle (the “start” cycle). What is the SAR output after 3 more clock cycles?
Problem 15.5

In this problem, you should design a 2-bit successive-approximation register (SAR), with data \(D \) and start-LOW (\(S \)) inputs, \(Q_1 \) (MSB) and \(Q_0 \) (LSB) outputs, and conversion-complete-LOW (\(CC \)) output. On start, the outputs should initialize to \(Q_1Q_0CC = 011 \).

(a) Draw a state diagram for the SAR, enumerating all possible output states \(Q_1Q_0CC \) as nodes. Specify all possible transitions, and label transition arrows with the appropriate input states wherever multiple transitions are possible. Also, make sure to handle all possible states and eliminate the possibility that the state machine will get “stuck.” (Remember you can use “X” for “doesn’t matter” for logic states in diagrams and truth tables.)

A suggested template for your state diagram is shown below. (That is, these are the states, you should fill in the transitions.)

(b) Write down a truth table for register inputs \(D_1, D_0, \) and \(D_{CC} \) in terms of the other variables to implement this SAR in sequential logic.
Again, a suggested template for your solution is shown below.

<table>
<thead>
<tr>
<th>S</th>
<th>D</th>
<th>Q_1</th>
<th>Q_0</th>
<th>\overline{CC}</th>
<th>D_1</th>
<th>D_0</th>
<th>$D_{\overline{CC}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(c) Finish the design: write down logical expressions for D_1, D_0, and $D_{\overline{CC}}$.
Chapter 16

Phase-Locked Loops

Simply put, a phase-locked loop (PLL) is a feedback-loop circuit that compares two oscillating signals. It attempts to adjust the frequency of the second one so that it exactly matches the first in terms of phase (and thus also in terms of frequency).

Strictly speaking, a phase-locked loop can be implemented in an analog circuit, where, for example, the circuit makes one sine wave copy another one. However, it is common to implement phase-locked loops using digital gates, so we are covering these as digital circuits.

It may also sound a bit weird to use a feedback loop to make a copy of a signal, when you could just directly make a copy of a signal, e.g., with a buffer amplifier or gate. However, the magic comes in taking advantage of the feedback loop. As our first main example, recall that using a counter, it is relatively straightforward to divide the frequency of a square-wave clock signal. But how do we multiply the frequency of a signal? The answer: a phase-locked loop.

16.1 Frequency Multiplier

The idea behind a frequency multiplier is to start with the original clock signal. Suppose we want to multiply the frequency by N. Then generate a new signal, divide it by N, and compare the divided signal to the original (i.e., phase synchronized). Adjust the frequency of the new signal until the divided version matches the original, and voila, you have a new signal with a frequency N times the original, with matching phases of the two signals.

The block diagram of a circuit that accomplishes this is shown below.
Chapter 16. Phase-Locked Loops

Let’s look at each of the components here.

1. The **phase detector** compares two oscillating signals, and the output gives some measure of the relative phase. A general requirement is that the “in sync” state should give a “zero output”—this need not actually be zero (i.e., it could be offset to some other voltage), but the point is that the signal should go up if the phase is perturbed one way, and down if the phase is perturbed the other way. There are two basic classes of digital phase detectors in PLLs.

 - **Type I phase detector.** This is simply an XOR gate, and it can be driven by digital signals, or also by analog signals, provided they have been converted to digital via a comparator or Schmitt trigger. The output of the XOR gate is illustrated below.

 ![XOR gate output](image)

 The output is a sequence of pulses; the output is **HIGH** whenever the two input signals mismatch. The XOR output is zero if the reference input matches the signal input, and the duty cycle of the output increases to 100% if the signals have a π phase difference. Only the **average** signal will matter, because the output is fed through a low-pass filter. So the average output is proportional to the phase difference, as shown below.

 ![Phase detector output](image)

 Then we should choose a $\pi/2$ phase shift as the lock point (i.e., the PLL will force the signal to be a 90°-phase-shifted copy of the reference). Remember this is because we need the output signal to vary both up and down if the phase moves away from the lock point.

 - **Type II phase detector.** This phase detector is sensitive to digital **edges**, so it is really suited to digital signals, although in principle if analog signals are converted to digital, this would amount to
the detector responding to the zero-crossings of the analog signals. To see how it works, consider the first timing diagram below.

![Timing Diagram](image-url)

The “normal” state of the phase detector is a middle voltage midway between LOW and HIGH. If the detector finds a rising edge from the reference signal first, then the output changes HIGH. When the edge from the other signal (“VCO/copy” signal, which we will explain below), then the output changes back to MID. If the relative phase has the opposite sign, then we have the situation shown below.

![Timing Diagram](image-url)

Now the VCO/copy signal presents its rising edge first, so the output goes from MID to LOW. It goes back to MID when the reference edge arrives. Once this signal is time-averaged, the result is shown below.

![Average Output](image-url)

Now the lock point is at zero phase, and because the output can move LOW or HIGH relative to the normal MID state, the output can vary in either direction. The advantage is that the lock point is in perfect sync: at the lock point, the error signal is identically zero, ever before the time average. Contrast this to the type-I case, where the output was a 50%-duty-cycle square wave. Some of this will leak through the time average, and end up frequency-modulating the output signal. Note that the operation of this circuit is independent of the duty cycles of the two signals, unlike the type-I case where we assumed 50% duty cycles. (Otherwise the locked phase may differ from $\pi/2$, and it may be necessary to choose a different lock voltage.)

Note that for sine-wave analog signals, the phase detector can be as simple as a multiplying amplifier (for rf frequencies, you would use an rf mixer, which has just this function).

2. The low-pass filter (Section 2.3.5) “keeps” low frequencies, and “removes” high frequencies. It thus acts to time-average the phase-detector signal. It also limits the speed with which the PLL can respond to frequency changes in the reference signal. This may be a disadvantage if you want to perfectly track the frequency. However, this allows the PLL to act as a frequency “flywheel,” so it ignores some of the noise in the incoming signal to “clean it up.” It also induces a phase shift, which we will return to below.

3. The voltage-controlled oscillator (VCO) is an oscillator (clock), where the output frequency f depends on an input control voltage. The frequency may depend nonlinearly on the control voltage, but it should be at least monotonic.

4. The counter is here as we described for frequency-multiplier applications. This should be omitted in other applications.
16.1.1 Feedback Loop

In the feedback loop here, the time-averaged output of the phase detector is fed into the VCO control input. Recall that in PID control (Chapter 7), it is necessary to integrate the error signal in order to get zero steady-state error. Here, this is automatic, since frequency ω and phase ϕ are related by

$$\omega = \frac{d\phi}{dt}. \quad (16.1)$$

Since we detect phase and are feeding back to a frequency control, we are controlling $\omega = \int \phi \, dt$, and thus we effectively have the integral of the error signal.

If the phase is below the lock point (i.e., phase lag), then the output is positive (relative to the lock point), and so the frequency increases. If the phase is above the lock point (i.e., phase lag), then the output is negative (relative to the lock point), and so the frequency decreases. Then there are different options for loops.

1. In a first-order loop, there is no low-pass filter, so there is just the 90° phase shift associated with the phase-frequency integration. In this case, we don’t have the time averaging as in the analysis above, but the idea is the same, because the integral VCO response makes the loop behave in essentially the same way.

2. In a second-order loop, there is a low-pass filter as in the diagram, so you need to be careful about any extra phase shifts to guard against instabilities. Again, the low-pass filter limits the rate of change (i.e., the bandwidth) of the control signal.

16.2 Example PLL

Below is a more detailed example of a PLL circuit, based on the 4046 PLL IC. This IC includes both type I and type II phase detectors, as well as a VCO. The circuit below is designed to multiply an input 60-Hz signal by 2^5 or 2^{10}, depending on whether the Q_5 or Q_{10} output of the 4040 counter is used. Note the passive low-pass filter and the use of the type II detector, so this is a second-order feedback loop.
16.3 Other Applications

16.3.1 FM Demodulation

Another important application of PLL circuits is frequency-modulation (FM) demodulation (i.e., the demodulator in an FM radio). In this case, the receiver receives an FM signal, and a PLL attempts to reproduce this signal. The FM signal was generated by changing the frequency according to some signal to be transmitted (e.g., audio). Then the control voltage to the VCO is a copy of the original signal, provided the VCO control voltage is related to frequency in the same way as in the original FM process. Typically, this just means that the VCO frequency should be linear in the control voltage.

16.3.2 Direct Digital Synthesis

Another application is in direct digital synthesis (DDS). The idea here is to take a precision clock input (e.g., from an atomic clock or oven-stabilized crystal oscillator), multiply it to a high frequency, and then use a counter to divide it to some other frequency. This can produce frequencies with high resolution over a wide range if the frequency-multiplication factor is large. The divider is digitally programmable so the final frequency is dynamically programmable. Then the digital counter output drives an analog “look-up table” of voltages to get a high-quality (low-distortion), timing-accurate sine wave. An example is the AD985L DDS IC, which can take a 10-MHz clock in, and produce a sine-wave output in the range of 0–135 MHz.
16.4 Exercises

Problem 16.1

Recall that a phase-locked loop based on a Type I detector is sensitive to the duty cycle of the input signal.

(a) Briefly, why?

(b) Suppose you have a signal consisting of a train of (digital) pulses. The rising edges occur at regularly, at a well-defined frequency. The falling edges, however, occur at irregular times. Show (draw a schematic and describe your reasoning) how to use two flip-flops (pick your favorite type) as divide-by-2 counters with a phase-locked loop to create a “cleaned” version of the same signal (i.e., square wave, 50% duty cycle, same frequency as the rising edges, “ignores” the falling edges). Note that the actual output may be phase-shifted compared to what is shown here.

You can use the following schematic symbols for the PLL components in your solution ($V_{\text{cont}} = $ control voltage; $f_{\text{out}} = $ oscillator output signal):

You can assume the circuit will work without a low-pass filter.
Index

LC frequency, 46
Q factor, 46–48
RC time, 36
Ω, 96
AND gate, 166
 3-input, 167
NAND gate, 166
NOR gate, 166
NOT gate, 165
OR gate, 166
XNOR gate, 167
XOR gate, 166–167, 172–173
 in terms of NAND gates, 173
1N4001, 56
1N4733, 58
1N5711, 57
1N914B, 56
2’s complement convention, 164–165
22V10, 221, 256
3-dB point, 40
4046 (PLL), 274
6116 SRAM, 215–216
741C, 101, 110, 112, 118
74138, 194
74139, 199
74150, 193
74151, 193
74154, 194
74251, 195

absolute-value amplifier
 op-amp, 148–149
absorption theorems, 172, 178
active rectifier
 op-amp, 143
AD594, 196
AD985L (DDS), 275
ADC, 247, 250–254
address bus, 216
aliasing, 248
anode, 53
anti-aliasing filter, 248
associative, 171
ATF22V10C, 221, 256
ATF750C, 221, 260
band-pass amplifier
 op-amp, 151–152
bandwidth, 128–132
bias network, 73–75
binary arithmetic, 163–165
 power of 2, 168
binary logic, 163
binary operation, 171
bipolar junction transistor, 65–92, 185–186
 as switch, 69–70
 current-control model, 81
 forward-active mode, 70
 saturation, 69–70, 88
bit, 163
Boltzmann constant, 57
Boolean algebra, 171–182
BUF634, 131
buffer gate, 165
capacitance, 33
capacitor, 33–37, 50
cathode, 53
charge, 15
chip select, 216
Clapton, Eric, 86–87
class-AB amplifier, 131
class-B amplifier, 131
clipping, 77
closed-loop mode, 102
CMOS, 96, 189
CMOS switch, 195
coaxial cable, 116
Cockroft–Walton multiplier, 61–62
common-emitter amplifier, 75–77, 89–92
common-mode gain factor, 80
common-mode rejection ratio (CMRR), 80–81, 113, 120
common-mode signal, 79
commutative, 171
comparator, 101–102, 132–135
 open-collector output, 132, 230
 Schmitt trigger, 133–134, 231–234
compensation, 131–132
complex notation, 37–38
complex PLD, 221
compliance, 73
conductance, 25
control
 integral, 158–159
 PI, 159
 PID, 159–160
 proportional, 156–158
control theory
 linear, 155–160
controller, 155
counter
 divide-by-2-or-3, 221–222
 divide-by-3, synchronous, 211–212
 divide-by-3-withhold, 213, 218–219
 divide-by-4, up/down, 213, 225
CPLD, 221
crossover distortion, 130
current, 15
current mirror, 82–83, 91
current source
 for laser diode, 152–153
 Howland, 148
 JFET, 97
 transistor, 72–75
DAC, 247–250
data bus, 216
DDS, 275
De Morgan’s theorems, 172
delta–star transformation, 25–26
demultiplexer, 193–199
 analog, 195–198
DEMUX, 193–199
depletion zone, 55
DG407, 195
DG412, 195
differential amplifier
 op-amp, 105–106, 113, 147–148
 transistor, 77–81
differential gain factor, 79
differential signal, 79
differentiator, 50
 op-amp, 106–109
digital electronics, 163
digital logic, 163
digital-to-analog conversion, 247–250
diode, 53–64
 forward voltage drop, 56
 forward-biased, 53
 ideal, 53
 ideality factor, 57
 reverse-biased, 53
 reverse-breakdown voltage, 57
 reverse-leakage current, 57
 semiconductor, 53–58
 vacuum, 53
 Zener, 58–59, 63
diode law, 57–58
diode logic, 184–185
direct digital synthesis, 275
distributive, 171
DL, 184–185
DRAM, 216
droop, 158
dynamic RAM, 216
Early effect, 84
Ebers–Moll equation, 81–84
EEPROM, 217
electromotive force (EMF), 15
electronically erasable PROM, 217
emitter follower, 70–72
EPROM, 217
erasable PROM, 217
Eric Clapton Stratocaster, 86–87
error, 156
exponential amplifier
 op-amp, 150–151
Farad, 33
feedback control, 155–160
feedback signal, 156
Fender Musical Instruments, 86
FET, 93–100
field-effect transistor, 93–100
 CMOS, 96
 IGFET, 95
 JFET, 93–94
 MOSFET, 94–96
 threshold voltage, 94
filter
 high-pass, 41–42
 low-pass, 39–41, 43
filters
 op-amp, 106–112
first-order loop, 274
fixed-point notation, 163
flip-flop
 D-type, 214
 pulse-area stabilizer, 208–210
floating-point notation, 163
fluence, 112
flyback transformer, 86
frequency, 37
full width at half maximum, 47
full-wave rectifier, 60–61, 63
fundamental charge, 57
gain, 75
gain factor
 common-mode, 80
gain factor differential, 79
gain–bandwidth product (GBWP), 129
GI754, 56
goal, 155
Gray code, 174
ground loop, 116
ground plane, 122
guitar preamp
 op-amp, 140–143
gyrator
 op-amp, 138–140
half-wave rectifier, 59–60, 63
harmonic oscillator
 damped, forced, 159
hexagon from hell, 26–27
high-pass filter, 41–42
 cascaded, 51–52
hole, 54
Howland current source, 148
IGFET, 95
impedance, 39
impedance-matching condition, 22
inductive load
 transistor switch, 84–85
input bias current, 110–112, 117–120
input impedance, 21
 through transistor, 71–72
input offset current, 120
input offset voltage, 112
instrumentation amplifier
 ac-coupled, hi-Z input, 116–117
 differential receiver, 115–116
 op-amp, 112–117
 thermocouple, 115
integrating factor, 35
integrator, 34–36
op-amp, 107–112
intrinsic emitter resistance, 81–82
inverter, 165
inverting amplifier
 op-amp, 103–104, 126–128
JFET, 93–94
 current source, 97
 source follower, 97–98
 voltage amplifier, 98–99
joule thief, 85–86
junction, 54
Karnaugh map, 174–179
Kirchoff’s laws, 16–17
LF411, 101
LM311, 132, 134
LM399, 58
logarithmic amplifier
 op-amp, 148
logic gates, 165–167, 183–191
long-tailed pair, 79
low-pass filter, 39–41
 in PLL, 273
 inductor, 50–51
 phase, 43
memory, 213–217
 state machines with, 217–221
mho (℧), 96
microprocessor, 219
Miller effect, 84
mixer
 rf, 273
MOSFET, 94–96
MR752, 56
multiplexer, 193–199
 analog, 195–198
 MUX, 193–199
n-type carrier, 54
n-type semiconductor, 54
negative feedback, 78, 102
negative-feedback mode, 102
negative-impedance converter
 op-amp, 149–150
noise immunity, 78
non-Ohmic, 53
noninverting amplifier
 op-amp, 104, 123–126
nonlinear, 53
Nyquist frequency, 247
octave, 40
Ohm’s law, 15–16
op-amp
 golden rules, 102
op-amps, 101–153
OPA111B, 101
OPA602C, 110, 112
open-collector output, 132, 230
open-loop gain, 101
 finite, 123–128
open-loop mode, 101
operational amplifier
 absolute-value amplifier, 148–149
 active rectifier, 143
 analog computer, 137–138
 band-pass amplifier, 151–152
 differentiator, 106–109
 exponential amplifier, 150–151
 filters, 106–112
 guitar preamp, 140–143
 gyrator, 138–140
 Howland current source, 148
 instrumentation amplifier, 112–117
 integrator, 107–112
 inverting amplifier, 103–104, 126–128
 logarithmic amplifier, 148
 negative-impedance converter, 149–150
 noninverting amplifier, 104, 123–126
 phase-shift oscillator, 135–136
 photodiode amplifier, 146–147
 pulse-area stabilizer, 143–145
 relaxation oscillator, 134–135
 single-supply, 121
 stability, 104
 summing amplifier, 104–105
 transimpeance amplifier, 146–147, 150
 unity-gain buffer, 102–103
operational amplifiers, 101–153
 bandwidth, 128–132
 comparator, 132–135
 compensation, 131–132
output enable, 216
output impedance, 21
 through transistor, 71–72
output swing, 101
p-n junction, 54
p-type carrier, 54
p-type semiconductor, 54
PAL, 211
path to ground
 dc, 111
phase detector, 272
 type I, 272
 type II, 272
phase shift, 42–43
 and power, 43–45
phase-locked loop, 271–275
phase-shift oscillator
 op-amp, 135–136
photodiode, 146–147
PID control, 155–160
PLA, 211
plant, 155
PLD, 211, 221
PLL, 271–275
potential, 15
 difference, 15
power, 16
power factor, 45
power-supply rejection ratio (PSRR), 121
printed circuit board (PCB), 122
programmable array logic, 211
programmable logic array, 211
programmable logic devices, 211, 221
programmable ROM, 217, 219–221
PROM, 217, 219–221
proportional–integral (PI) control, 159
proportional–integral–derivative (PID) control, 159
pulse-area stabilizer
 op-amp, 143–145, 208–210
push-pull amplifier, 129–131
quiescent current, 83
race condition, 176–177
RAM, 213–216
random-access memory, 213–216
reactance
 capacitive, 38
 inductive, 38–39
read enable, 215
read-only memory, 216
rectifier
 active, 143
 full-wave, 60–61, 63
 half-wave, 59–60, 63
relaxation oscillator
 op-amp, 134–135
resistor-transistor logic, 185–187
resistors, 16
 parallel, 17–18
 series, 17
voltage divider, 18–21
resonant frequency, 46
rms, 44
ROM, 216
RTL, 185–187

sample, 163
sampling rate, 247
sampling theorem, 247
saturation current, 57
schmapacitor, 52, 146
schmesistor, 29, 146
Schmitt trigger, 133–134, 231–234
Schmohn’s law, 29, 146
second-order loop, 274
sequential logic, 210–222
siemens, 96
sign-magnitude convention, 164
signed integer, 164–165
simple PLD, 221
slew rate, 129
source follower
 JFET, 97–98
SPICE, 58
SPLD, 221
SRAM, 213–216
state diagram, 212–213
state machine, 210–222
static RAM, 213–216
summing amplifier
 op-amp, 104–105
switch, 183–184
 SPDT, 184
 SPST, 183

Tesla coil, 49
tesla coil
 solid-state, 86
Thévenin’s theorem, 19–24
thermal voltage, 81
thermocouple, 195–198
three-state logic, 195
transconductance, 81, 94, 96
transfer function
 feedback-control loop, 156–157
transimpedance amplifier
 op-amp, 150
transistor
 bipolar junction, 65–92, 185–186
transistor switch
 inductive load, 84–85
transistor-transistor logic, 187–190
transistor-transistor logic (TTL), 163
truth table, 165
TTL, 187–190
two’s complement convention, 164–165
type I phase detector, 272
type II phase detector, 272
unity-gain bandwidth, 129
unity-gain buffer
 op-amp, 102–103
unsigned integer, 163–164
VCO, 273
voltage, 15
voltage amplifier
 JFET, 98–99
voltage divider, 18–21, 25
voltage follower
 op-amp, 102–103
voltage multiplier
 Cockroft–Walton, 61–62
voltage-controlled oscillator, 273
write enable, 215, 216
Zener diode, 58–59, 63