Note: National Semiconductor recommends replacing 2N2920 and 2N3728 matched pairs with LM394 in all application circuits.

Section 1—Basic Circuits

Inverting Amplifier

\[V_{\text{OUT}} = -\frac{R_2}{R_1} V_{\text{IN}} \]

\[R_{\text{IN}} = R_1 \]

Non-Inverting Amplifier

\[V_{\text{OUT}} = \frac{R_1 + R_2}{R_1} V_{\text{IN}} \]

Difference Amplifier

\[V_{\text{OUT}} = \frac{R_1 + R_2}{R_1 + R_4} \frac{R_4}{R_3} V_2 - \frac{R_2}{R_1} V_1 \]

For \(R_1 = R_3 \) and \(R_2 = R_4 \)

\[V_{\text{OUT}} = \frac{R_2}{R_1} (V_2 - V_1) \]

\[R_1/R_2 = R_3/R_4 \]

For minimum offset error due to input bias current

Inverting Summing Amplifier

\[V_{\text{OUT}} = -\frac{R_4}{R_1 + \frac{R_2}{R_1 + R_3} + \frac{R_3}{R_1 + R_4}} V_{\text{IN}} \]

\[R_5 = R_1/R_2/R_3/R_4 \]

For minimum offset error due to input bias current
Section 1—Basic Circuits (Continued)

Non-Inverting Summing Amplifier

Inverting Amplifier with High Input Impedance

*RS = 1k for 1% accuracy

Source impedance less than 100k gives less than 1% gain error.

Fast Inverting Amplifier with High Input Impedance

Non-Inverting AC Amplifier

\[V_{OUT} = \frac{R_1 + R_2}{R_1} V_{IN} \]

\[R_{IN} = \frac{R_3}{R_1} \]

\[R_3 = R_1 / R_2 \]
Section 1—Basic Circuits (Continued)

Practical Differentiator

![Differentiator Circuit Diagram](image1)

\[f_c = \frac{1}{2\pi R_2 C_1} \]
\[f_h = \frac{1}{2\pi R_1 C_1} = \frac{1}{2\pi R_2 C_2} \]
\[f_c < f_h < f_{\text{unity gain}} \]

Integrator

![Integrator Circuit Diagram](image2)

\[V_{\text{OUT}} = -\frac{1}{R_1 C_1} \int_{t_1}^{t_2} V_{\text{IN}} \, dt \]
\[f_c = \frac{1}{2\pi R_1 C_1} \]
\[R_1 = R_2 \]

For minimum offset error due to input bias current

Fast Integrator

![Fast Integrator Circuit Diagram](image3)

Current to Voltage Converter

![Current to Voltage Converter Circuit Diagram](image4)

\[V_{\text{OUT}} = \ln R_1 \]

For minimum error due to bias current R2 = R1
Section 1—Basic Circuits (Continued)

Circuit for Operating the LM101 without a Negative Supply

Neutralizing Input Capacitance to Optimize Response Time

Integrator with Bias Current Compensation

Voltage Comparator for Driving DTL or TTL Integrated Circuits

Threshold Detector for Photodiodes

*Adjust for zero integrator drift.
Current drift typically 0.1 nA/°C over −55°C to 125°C temperature range.
Section 1—Basic Circuits (Continued)

Double-Ended Limit Detector

\[V_{\text{OUT}} = 4.6\text{V for } V_{\text{LT}} \leq V_{\text{IN}} \leq V_{\text{UT}} \]
\[V_{\text{OUT}} = 0\text{V for } V_{\text{IN}} < V_{\text{LT}} \text{ or } V_{\text{IN}} > V_{\text{UT}} \]

Multiple Aperture Window Discriminator

\[V_{\text{OUT}} = 4.6\text{V for } V_{\text{LT}} \leq V_{\text{IN}} \leq V_{\text{UT}} \]
\[V_{\text{OUT}} = 0\text{V for } V_{\text{IN}} < V_{\text{LT}} \text{ or } V_{\text{IN}} > V_{\text{UT}} \]
Offset Voltage Adjustment for Inverting Amplifiers Using Any Type of Feedback Element

\[\text{RANGE} = \pm V \left(\frac{R_2}{R_1} \right) \]

Offset Voltage Adjustment for Non-Inverting Amplifiers Using Any Type of Feedback Element

\[\text{RANGE} = \pm V \left(\frac{R_2}{R_1} \right) \]
\[\text{GAIN} = 1 + \frac{R_5}{R_4 + R_2} \]

Offset Voltage Adjustment for Voltage Followers

\[\text{RANGE} = \pm V \left(\frac{R_3}{R_1} \right) \]

Offset Voltage Adjustment for Differential Amplifiers

\[R_2 = R_3 + R_4 \]
\[\text{RANGE} = \pm V \left(\frac{R_5}{R_4} \right) \left(\frac{R_1}{R_1 + R_3} \right) \]
\[\text{GAIN} = \frac{R_2}{R_1} \]
Section 1—Basic Circuits

Offset Voltage Adjustment for Inverting Amplifiers Using 10 kΩ Source Resistance or Less

\[R_1 = 2000 \frac{R_3}{R_4} \]
\[R_4/R_3 \leq 10 \text{kΩ} \]
\[\text{RANGE} = \pm V \left(\frac{R_3/R_4}{R_1} \right) \]

Section 2 — Signal Generation

Low Frequency Sine Wave Generator with Quadrature Output
Section 2 — Signal Generation (Continued)

High Frequency Sine Wave Generator with Quadrature Output

Free-Running Multivibrator

Wein Bridge Sine Wave Oscillator

*Chosen for oscillation at 100 Hz

Eldema 1869 10V, 14 mA Bulb
Section 2 — Signal Generation (Continued)

Function Generator

Pulse Width Modulator
Bilateral Current Source

\[I_{\text{OUT}} = \frac{R_3}{R_1 + R_5} V_{\text{IN}} \]

\[R_3 = R_4 + R_5 \]

\[R_1 = R_2 \]
Section 2 — Signal Generation (Continued)

Wein Bridge Oscillator with FET Amplitude Stabilization

\[f = \frac{1}{2\pi R_1 C_1} \]

- \(R_1 = R_2 \)
- \(C_1 = C_2 \)
Section 2 — Signal Generation (Continued)

Low Power Supply for Integrated Circuit Testing

![Circuit Diagram]
Section 2 — Signal Generation

Negative Voltage Reference

![Diagram of Negative Voltage Reference](image1)

Precision Current Sink

![Diagram of Precision Current Sink](image2)

Precision Current Source

![Diagram of Precision Current Source](image3)

\[I_O = \frac{V_{IN}}{R1} \]

\[V_{IN} \geq 0V \]
Section 3 — Signal Processing

Differential-Input Instrumentation Amplifier

\[R_4 = R_5 \]
\[R_2 = R_3 \]
\[A_U = \frac{R_4}{R_2} \]

Variable Gain, Differential-Input Instrumentation Amplifier

*Gain adjust

\[A_U = 10^{-4} R_6 \]
Instrumentation Amplifier with ±100 Volt Common Mode Range

Matching determines common mode rejection.

\[R_1 = R_5 = 10R_2 \]
\[R_2 = R_3 \]
\[R_3 = R_4 \]
\[R_1 = R_6 = 10R_3 \]
\[A_v = \frac{R_7}{R_6} \]
Section 3 — Signal Processing (Continued)

Instrumentation Amplifier with ±10 Volt Common Mode Range

![Instrumentation Amplifier Circuit Diagram]

- $R_1 = R_4$
- $R_2 = R_5$
- $R_6 = R_7$

$A_v = \frac{R_6}{R_2} \left(1 + \frac{2R_1}{R_3}\right)$

High Input Impedance Instrumentation Amplifier

![High Input Impedance Amplifier Circuit Diagram]

- $R_1 = R_4$, $R_2 = R_3$
- $A_v = 1 + \frac{R_1}{R_2}$

*†Matching Determines CMRR
‡May be deleted to maximize bandwidth
Bridge Amplifier with Low Noise Compensation

- Reduces feed through of power supply noise by 20 dB and makes supply bypassing unnecessary.
- Trim for best common mode rejection
- Gain adjust

Bridge Amplifier

\[\frac{R_1}{R_{S1}} = \frac{R_2}{R_{S2}} \]

\[V_{OUT} = V_+ \left(1 - \frac{R_1}{R_{S1}} \right) \]

Precision Diode

Precision Clamp Fast Half Wave Rectifier

\[E_{REF} \text{ must have a source impedance of less than } 200\Omega \text{ if } D_2 \text{ is used.} \]
*Feedforward compensation can be used to make a fast full wave rectifier without a filter.

Low Drift Peak Detector

![Diagram of a Low Drift Peak Detector](image)
Section 3 — Signal Processing (Continued)

Absolute Value Amplifier with Polarity Detector

\[
V_{\text{OUT}} = -|V_{\text{IN}}| \times \frac{R_2}{R_1}
\]

\[
R_2 = \frac{R_4 + R_3}{R_3}
\]

Sample and Hold

Polycarbonate-dielectric capacitor
Section 3 — Signal Processing

(sample and hold figure)

- Worst case drift less than 2.5 mV/sec
- Teflon, Polyethylene or Polycarbonate Dielectric Capacitor

(low drift integrator figure)

- Q1 and Q3 should not have internal gate-protection diodes.
- Worst case drift less than 500 µV/sec over −55°C to +125°C.
Fast† Summing Amplifier with Low Input Current

*In addition to increasing speed, the LM101A raises high and low frequency gain, increases output drive capability and eliminates thermal feedback.

†Power Bandwidth: 250 kHz
Small Signal Bandwidth: 3.5 MHz
Slew Rate: 10V/\mu s

\[C_5 = \frac{6 \times 10^{-8}}{R_f} \]

Fast Integrator with Low Input Current
Section 3 — Signal Processing (Continued)

Adjustable Q Notch Filter

\[f_0 = \frac{1}{2\pi R_1 C_1} \]
\[= 60 \text{ Hz} \]
\[R_1 = R_2 = R_3 \]
\[C_1 = C_2 = C_3 \]
Section 3 — Signal Processing (Continued)

Easily Tuned Notch Filter

![Circuit Diagram]

- **R1**: 4K ohm, 0.1%
- **R2**: 4K ohm, 0.1%
- **R3**: 4K ohm, 0.1%
- **C1**: 500 pF
- **LM107**

\[f_0 = \frac{1}{2\pi R_4 C_1 C_2} \]

- **R4** = **R5**
- **R1** = **R3**
- **R4** = \(\frac{1}{2} R_1 \)

Tuned Circuit

![Circuit Diagram]

- **R2**: 100 ohm
- **R1**: 100K ohm
- **C1**: 0.1 \(\mu \)F
- **C2**: 0.33 \(\mu \)F
- **R3**: 10K ohm
- **C3**: 300 pF
- **C4**: 30 pF

\[f_0 = \frac{1}{2\pi R_1 R_2 C_1 C_2} \]

Two-Stage Tuned Circuit

![Circuit Diagram]

- **R2**: 100K ohm
- **C1**: 1 \(\mu \)F
- **C2**: 1 \(\mu \)F
- **LM102**

\[f_0 = \frac{1}{2\pi R_1 R_2 C_1 C_2} \]
Section 3 — Signal Processing (Continued)

Negative Capacitance Multiplier

\[C = \frac{R_2}{R_3} C_1 \]

\[I_L = \frac{V_{os} + R_2 I_{os}}{R_3} \]

\[R_S = \frac{R_3(R_1 + R_{IN})}{R_{IN} A_{VO}} \]

Variable Capacitance Multiplier

\[C = \left(1 + \frac{R_S}{R_a} \right) C_1 \]
Section 3 — Signal Processing (Continued)

Simulated Inductor

\[L \geq R_1 R_2 C_1 \]

\[R_S = R_2 \]

\[R_P = R_1 \]

Capacitance Multiplier

\[C = \frac{R_1 C_1}{R_3} \]

\[I_L = \frac{V_{os} + I_{os} R_1}{R_3} \]

\[R_S = R_3 \]

High Pass Active Filter

\[R_1 = 110K \]

\[C_1^\ast = 0.02 \mu F \]

\[C_2^\ast = 0.01 \mu F \]

Low Pass Active Filter

\[C_1^\ast = 940 \mu F \]

\[C_2^\ast = 470 \mu F \]

*Values are for 100 Hz cutoff. Use metalized polycarbonate capacitors for good temperature stability.

*Values are for 10 kHz cutoff. Use silvered mica capacitors for good temperature stability.
Section 3 — Signal Processing (Continued)

Nonlinear Operational Amplifier with Temperature Compensated Breakpoints

![Circuit Diagram]

Current Monitor

![Current Monitor Circuit Diagram]

\[V_{OUT} = \frac{R_1 R_3}{R_2} \]
Section 3 — Signal Processing (Continued)

Saturating Servo Preamplifier with Rate Feedback

Power Booster

www.national.com
Section 3 — Signal Processing

Analog Multiplier

\[R_5 = R_1 \left(\frac{V^-}{10} \right) \]
\[V_1 > 0 \]
\[V_{OUT} = \frac{V_1 V_2}{10} \]

Long Interval Timer

*Low leakage ~0.017 \(\mu F \) per second delay

Fast Zero Crossing Detector

Propagation delay approximately 200 ns

†DTL or TTL fanout of three.
Minimize stray capacitance
Pin 8
Section 3 — Signal Processing (Continued)

Amplifier for Piezoelectric Transducer

Low frequency cutoff = R1 C1

Temperature Probe

*Set for 0V at 0°C
†Adjust for 100 mV/°C

Photodiode Amplifier

\[V_{OUT} = R1 I_D \]

*Operating photodiode with less than 3 mV across it eliminates leakage currents.

High Input Impedance AC Follower
Section 3 — Signal Processing (Continued)

Temperature Compensated Logarithmic Converter

10 nA < I_{IN} < 1 mA
Sensitivity is 1V per decade

\(1 \text{k}\Omega \pm 1\%\) at 25°C, +3500 ppm/°C.
Available from Vishay Ultronix, Grand Junction, CO, Q81 Series.

*Determines current for zero crossing on output: 10 µA as shown.

Root Extractor

\(1/2N3728\) matched pairs
Section 3 — Signal Processing (Continued)

Multiplier/Divider

Cube Generator

\[E_{\text{OUT}} = -\frac{E_1}{E_2} \]
for
\[E_1 \geq 0 \text{ and } E_2 \geq 0 \]
Section 3 — Signal Processing (Continued)

Fast Log Generator

![Fast Log Generator Circuit Diagram]

†1 kΩ (±1%) at 25°C, +3500 ppm/°C.
Available from Vishay Ultronix, Grand Junction, CO, Q81 Series.

Anti-Log Generator

![Anti-Log Generator Circuit Diagram]

†1 kΩ (±1%) at 25°C, +3500 ppm/°C.
Available from Vishay Ultronix, Grand Junction, CO, Q81 Series.
LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.