Exercise 1.10

\[A_{vo} = \frac{v_o}{v_i} = \frac{200i_i R_o}{i_i R_i} = 4 \quad R_i = 1000 \, \Omega \quad R_o = 20 \, \Omega \]

Exercise 1.11

\[G_{msc} = \frac{i_{osc}}{v_i} = \frac{100i_i}{500i_i} = 0.2 \, \text{S} \]

\[R_i = 500 \, \Omega \]
\[R_o = 50 \, \Omega \]
Exercise 1.12

\[R_{\text{noC}} = \frac{v_{\text{oc}}}{i_1} = \frac{G_{\text{msc}} v_i R_o}{v_i / R_i} = G_{\text{msc}} R_o R_i = 500 \, \text{k}\Omega \]
Problem 1.19

With the switch open we have:

\[V_o = 50 \text{ mV} = V_s \frac{R_i}{R_i + 10^6} A_{vo} \frac{R_L}{R_L + R_o} \]

(1)

With the switch closed we have:

\[V_o = 100 \text{ mV} = V_s A_{vo} \frac{R_L}{R_L + R_o} \]

(2)

Dividing the respective sides of Equation (1) by those of Equation (2), we have:

\[\frac{50 \text{ mV}}{100 \text{ mV}} = \frac{R_i}{R_i + 10^6} \]

Solving we obtain \(R_i = 1 \text{ M}\Omega \).

Problem 1.20

If we cascade two amplifiers A and B the equivalent circuit is:

![Cascaded Amplifier](image)

The open-circuit voltage gain of the cascaded amplifier is:

\[A_{vo} = A_{voA} A_{voB} \frac{R_{iB}}{R_{oA} + R_{iB}} \]

Problem 1.21

See the figure shown in the solution for Problem 1.20. When the amplifiers are cascaded in the order A-B, we have:
\[R_i = R_{iA} = 3 \text{ k}\Omega \]
\[R_o = R_{OB} = 20 \text{ } \Omega \]

\[A_{vo} = A_{voA}A_{voB} \frac{R_{iB}}{R_{OA} + R_{iB}} = 4.998 \times 10^4 \]

On the other hand for the B-A cascade we have:

\[R_i = R_{iB} = 1 \text{ M}\Omega \]
\[R_o = R_{OA} = 400 \text{ } \Omega \]

\[A_{vo} = A_{voA}A_{voB} \frac{R_{iA}}{R_{OB} + R_{iA}} = 4.967 \times 10^4 \]
Problem 2.40

Op amp imperfections in the linear range of operation include:

- finite input impedance
- nonzero output impedance
- finite open-loop gain
- finite bandwidth
- nonzero common-mode gain

Problem 2.41

For the noninverting amplifier with a given op amp, the product of dc gain and closed-loop bandwidth is constant as the dc gain is changed.

Problem 2.42

(a) Refer to Figure P2.42 in the text.

\[v_s = R_{\text{in}} i_s + R_o i_s + A_{\text{OL}} (R_{\text{in}} i_s) \]

\[v_o = R_o i_s + A_{\text{OL}} (R_{\text{in}} i_s) \]

\[A_{\text{VS}} = \frac{v_o}{v_s} = \frac{R_o + A_{\text{OL}} R_{\text{in}}}{R_{\text{in}} + R_o + A_{\text{OL}} R_{\text{in}}} \]

\[A_{\text{VS}} = \frac{25 + 10^5 \times 10^6}{10^6 + 25 + 10^5 \times 10^6} = 0.99999 \]

The gain would be 1.00000 for an ideal op amp.

(b) \[Z_{\text{in}} = \frac{v_s}{i_s} = R_{\text{in}} + R_o + A_{\text{OL}} R_{\text{in}} = 10^{11} \Omega \]

In comparison, we would have \(Z_{\text{in}} = \infty \) for an ideal op amp.
\[v_i = -v_x \quad i_x = \frac{v_x}{R_{in}} + \frac{v_x - A_{OL}v_i}{R_o} \quad z_o = \frac{v_x}{i_x} = \frac{1}{\frac{1}{R_{in}} + \frac{1}{1 + A_{OL}R_o}} \]

Evaluating we find \(z_o = 2.5 \times 10^{-4} \, \Omega \) compared to \(z_o = 0 \) for an ideal op amp.

Problem 2.43

(a) Refer to Figure P2.43 in the text. Writing current equations at the input terminal of the op amp and at the output terminal we have:

\[\frac{v_s + v_i}{R_1} + \frac{v_o + v_i}{R_2} + \frac{v_i}{R_{in}} = 0 \quad (1) \]

\[\frac{v_o + v_i}{R_2} + \frac{v_o - A_{OL}v_i}{R_o} = 0 \quad (2) \]

Now we solve Equation (1) for \(v_i \), substitute into Equation (2), and use algebra to obtain:

\[A_{VS} = \frac{v_o}{v_s} = \frac{-R_2}{R_1 \left[1 + \left(\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_{in}} \right) \frac{R_oR_2 + R_2^2}{A_{OL}R_2 - R_o} \right]} \]

Evaluating we find \(A_{VS} = -9.9989 \) compared to \(A_{VS} = -10 \) for an ideal op amp.